Is Stem Cell a Curer or an Obstruction?
Abstract
Stem cell research and therapy are progressing these days dramatically. Stem cell therapy holds enormous treatment potential for many diseases which currently have no or limited therapeutic options. Unfortunately, this potential also comes with side-effects. In this review, the positive and negative effects of regulation of stem cells will be explained. Stem cells are undifferentiated cells which able to develop into many different cells of types in the body during early life and growth. There are five types of stem cells: embryonic stem cells, induced pluripotent stem cells, somatic stem cells, fetal stem cells and mesenchymal stem cells. Stem cell transplantation is one form of stem cell therapy, it comes with different techniques sourced, and those are autologous and allogeneic transplantation stem cells. In an autologous transplant, a patient's blood-forming stem cells are collected, meanwhile, in an allogeneic transplant, target cells are replaced with new stem cells obtained from a donor or donated umbilical cord blood. Its abilities to maintain the phenotype, self-renewing and differentiate itself into specialized cells, give rise to stem cell as an innovation for the treatment of various diseases. In the clinical setting, stem cells are being explored for different conditions, such as in tissue repair and regeneration and autoimmune diseases therapy. But along with its benefit, stem cell therapy also holds some harm. It is known that the treatment using stem cell for curing and rehabilitation has the risk of tumor formation.
Keywords: stem cell, therapy, transplantation, tumorigenic, mesenchymal stem cell, allogeneic
Full Text:
PDFReferences
Joseph NM, Morrison SJ. Toward an understanding of the physiological function of mammalian stem cells. Dev Cell. 2005; 9(2): 173-83. CrossRef
Herberts CA, Kwa MS, Hermsen HP. Risk factors in the development of stem cell therapy. J Transl Med. 2011; 9(1): 29. doi: 10.1186/1479-5876-9-29. CrossRef
Master Z, McLeod M, Mendez I. Benefits, risks and ethical considerations in translation of stem cell research to clinical applications in Parkinson's disease. J Med Ethics. 2007; 33(3): 169-73. CrossRef
Konstantinov IE. In search of Alexander A. Maximow: the man behind the unitarian theory of hematopoiesis. PerspectBiol Med. 2000; 43(2): 269-76. CrossRef
UpToDate [Internet]. WolterKluwers. In: Scadden DT, Raaijmakers M. Overview of Stem Cells. [updated 2015; cited November 25, 2016]. Available from: http://www.uptodate.com/contents/overview-of-stem-cells?source=search_result&search=stem+cell&selectedTitle=1~150. Link
National Institutes of Health [Internet]. Bethesda: National Institutes of Health, U.S. Department of Health and Human Services. Stem Cell Information Home Page. [updated 2016; cite November 25, 2016]. Available from: http://stemcells.nih.gov/info/basics/1.htm. Link
The University of Rodhe Island [Internet]. Shihadeh H. History and Recent Advances of Stem Cell Biology and the Implications for Human Health. Senior Honors Projects. [updated 2015; cite November 25, 2016]. Available from: http://digitalcommons.uri.edu/cgi/viewcontent.cgi?article=1432&context=srhonorsprog. Link
Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981; 292(5819): 154-6. CrossRef
Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. ProcNatlAcadSci USA. 1981; 78: 7634-8. Link
Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998; 282(5391): 1145-7. CrossRef
Solter D. From teratocarcinomas to embryonic stem cells and beyond: A history of embryonic stem cell research. Nat Rev Genet. 2006; 7(4): 319-27. CrossRef
Lengner CJ. IPS cell technology in regenerative medicine. Ann NY Acad Sci. 2010; 1192: 38-44. CrossRef
Bradley A, Evans M, Kaufman MH, Robertson E. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature. 1984; 309(5965): 255-6. CrossRef
Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A. Embryonic stem cell lines from human blastocysts: Somatic differentiation in vitro. Nat Biotechnol. 2000; 18(4): 399-404. CrossRef
Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007; 318(5858): 1917-20. CrossRef
Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007; 448(7151): 313-7. CrossRef
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007; 131(5): 861-72. CrossRef
Aasen T, Raya A, Barrero MJ, Garreta E, Consiglio A, Gonzalez F, et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol. 2008; 26(11): 1276-84. CrossRef
Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science. 2008; 321(5893):1218-21. CrossRef
Hockemeyer D, Soldner F, Cook EG, Gao Q, Mitalipova M, Jaenisch R. A drug-inducible system for direct reprogramming of human somatic cells to pluripotency. Cell Stem Cell. 2008; 3(3): 346-53. CrossRef
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006; 126(4): 663-76. CrossRef
Yu J, Thomson JA. Pluripotent stem cell lines. Genes Dev. 2008; 22(15): 1987-97. CrossRef
Saric T, Hescheler J. Stem cells and nuclear reprogramming. Minim Invasive Ther Allied Technol. 2008; 17(2): 64-78. CrossRef
Xu N, Papagiannakopoulos T, Pan G, Thomson JA, Kosik KS. MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell. 2009; 137(4): 647-58. CrossRef
Meiliana A, Wijaya A. Progress and future challenges of human induced pluripotents stem cell in regenerative medicine. Indones Biomed J. 2011; 3(2): 76-92. CrossRef
Pessina A, Gribaldo L. The key role of adult stem cells: therapeutic perspectives. Curr Med Res Opin. 2006; 22(11): 2287-300. CrossRef
Koch P, Kokaia Z, Lindvall O, Brustle O. Emerging concepts in neural stem cell research: autologous repair and cell-based disease modelling. Lancet Neurol. 2009; 8(9): 819-29. CrossRef
Pappa KI, Anagnou NP. Novel sources of fetal stem cells: where do they fit on the developmental continuum?. Regen Med. 2009; 4(3): 423-33. CrossRef
De Coppi P, Bartsch G, Siddiqui MM, Xu T, Santos CC, Perin L, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol. 2007; 25(1): 100-6. CrossRef
Prusa AR, Marton E, Rosner M, Bernaschek G, Hengstschläger M. Oct-4-expressing cells in human amniotic fluid: A new source for stem cell research? Hum Reprod. 2003; 18(7): 1489-93. Link
Karahuseyinoglu S, Cinar O, Kilic E, Kara F, Akay GG, Demiralp DO, et al. Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells. 2007; 25(2): 319-31. CrossRef
Meiliana A,Dewi NM, Wijaya A. Mesenchymal stem cells manage endogenous tissue regeneration. Indones Biomed J. 2016; 8(2): 71-90. CrossRef
Prockop DJ, Olson SD. Clinical trials with adult stem/progenitor cells for tissue repair: let's not overlook some essential precautions. Blood. 2007; 109(8): 3147-51. CrossRef
Kang SG, Shinojima N, Hossain A, Gumin J, Yong RL, Colman H, et al. Isolation and perivascular localization of mesenchymal stem cells from mouse brain. Neurosurgery. 2010; 67(3): 711-20. CrossRef
Najimi M, Khuu DN, Lysy PA, Jazouli N, Abarca J, Sempoux C, et al. Adult-derived human liver mesenchymal-like cells as a potential progenitor reservoir of hepatocytes?. Cell Transplant. 2007; 16(7): 717- 28. CrossRef
Lama VN, Smith L, Badri L, Flint A, Andrei AC, Murray S, et al. Evidence for tissue-resident mesenchymal stem cells in human adult lung from studies of transplanted allografts. J Clin Invest. 2007; 117(4): 989-96. CrossRef
Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, et al. Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells. 2004; 22(7): 1330-7. CrossRef
Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002; 13(12): 4279-95. CrossRef
Lina Y, Wijaya A. Novel sources of fetal stem cells for future regenerative medicine. Indones Biomed J. 2012; 4(1): 3-11. CrossRef
Lina Y, Wijaya A. Adipose-derived stem cells for future regenerative system medicine. Indones Biomed J. 2012; 4(2): 59-72. CrossRef
Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999; 284(5411): 143-7. CrossRef
Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002; 418(6893): 41-9. CrossRef
Memorial Sloan Kettering Cancer Center [Internet]. Blood & Marrow Stem Cell Transplantation: Transplantation at MSK. [updated 2016; cited November 25, 2016]. Available from: https://www.mskcc.org/cancer-care/treatments/cancer-treatments/blood-stem-cell-transplantation/approach. Link
Mamidi M, Dutta S, Bhonde R, Das A, Pal R. Allogeneic and autologous mode of stem cell transplantation in regenerative medicine: Which way to go? Med Hypotheses. 2014; 83(6): 787-91. CrossRef
Karantalis V, Schulman I, Balkan W, Hare JM. Allogeneic cell therapy: a new paradigm in therapeutics. Circ Res. 2014; 116(1): 12-15. CrossRef
Colpo GD, Ascoli BM, Wollenhaupt-Aguiar B, Pfaffenseller B, Silva EG, Cirne-Lima EO, et al. Mesenchymal stem cells for the treatment of neurodegenerative and psychiatric disorders. An Acad Bras Cienc. 2015; 87(2 Suppl): 1435-49. CrossRef
Jorgensen C, Noël D. Mesenchymal stem cells in osteoarticular diseases. Regen Med. 2011; 6(6 Suppl): 44-51. CrossRef
Pei X, Xi J, Yan X, Yue W, Zhou J. Mesenchymal stem cells in tissue repairing and regeneration: progress and future. Burns Trauma. 2013;1(1): 13-20. CrossRef
Eirin A, Lerman LO. Mesenchymal stem cell treatment for chronic renal failure. Stem Cell Res Ther. 2014; 5(4): 83. doi: 10.1186/scrt472. CrossRef
Zhao K, Liu Q. The clinical application of mesenchymal stromal cells in hematopoietic stem cell transplantation. J Hematol Oncol. 2016; 9(1): 46. doi: 10.1186/s13045-016-0276-z. CrossRef
Zhao Q, Ren H, Han Z. Mesenchymal stem cells: Immunomodulatory capability and clinical potential in immune diseases. J Cell Immunother. 2016; 2(1): 3-20. CrossRef
Pham PV. Clinical trials for stem cell transplantation: when are they needed? Stem Cell Res Ther. 2016; 7(1): 65. doi: 10.1186/s13287-016-0325-0. CrossRef
Kuruvilla J. The role of autologous and allogeneic stem cell transplantation in the management of indolent B-cell lymphoma. Blood. 2016; 127(17): 2093-98. CrossRef
Rigol M, Solanes N, Roura S, Roqué M, Novensà L, Dantas AP, et al. Allogeneic adipose stem cell therapy in acute myocardial infarction. Eur J Clin Invest. 2013; 44(1): 83-92. CrossRef
Barry FP, Murphy JM, O'Brien T, Mahon B. Mesenchymal stem cell transplantation for tissue repair. Semin Plast Surg. 2005; 19(3): 229-39. CrossRef
Dimarino AM, Caplan AI, Bonfield TL. Mesenchymal stem cells in tissue repair. Front Immunol. 2013; 4: 201. CrossRef
Kim N, Cho SG. Clinical applications of mesenchymal stem cells. Korean J Intern Med. 2016; 28(4): 387-402. CrossRef
Vonk LA, de Windt TS, Slaper-Cortenbach ICM, Saris DBF. Autologous, allogeneic, induced pluripotent stem cell or a combination stem cell therapy? Where are we headed in cartilage repair and why: a concise review. Stem Cell Res Ther. 2015; 6(1): 94. doi: 10.1186/s13287-015-0086-1. CrossRef
Wyles CC, Houdek MT, Behfar A, Sierra RJ. Mesenchymal stem cell therapy for osteoarthritis: current perspectives. Stem Cells Cloning. 2016; 8: 117-24. CrossRef
Freitag J, Bates D, Boyd R, Shah K, Barnard A, Huguenin L, et al. Mesenchymal stem cell therapy in the treatment of osteoarthritis: reparative pathways, safety and efficacy – a review. BMC Musculoskelet Disord. 2016; 17(1): 230. doi: 10.1186/s12891-016-1085-9. CrossRef
Uth K, Trifonov D. Stem cell application for osteoarthritis in the knee joint: a mini review. World J Stem Cells. 2014; 6(5): 629-36. CrossRef
Trounson A, McDonald C. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell. 2015; 17(1): 11-22. CrossRef
Wang L, Ting C, Yen M, Liu K, Sytwu H, Wu K, et al. Human mesenchymal stem cells (MSCs) for treatment towards immune- and inflammation-mediated diseases: review of current clinical trials. J Biomed Sci. 2016; 23(1): 76. doi: 10.1186/s12929-016-0289-5. CrossRef
Gao F, Chiu SM, Motan DA, Zhang Z, Chen L, Ji HL, et al. Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death Dis. 2016; 7(1): e2062. doi: 10.1038/cddis.2015.327. CrossRef
Kalodimou VE. Regenerative medicine applications in autoimmune disorders. J Autoimmune Disord. 2015; 1(1): 8. Link
Kuhn NZ, Tuan RS. Regulation of stemness and stem cell niche of mesenchymal stem cells: Implications in tumorigenesis and metastasis. J Cell Physiol. 2010; 222(2): 268-77. CrossRef
Martinez-Agosto JA, Mikkola HK, Hartenstein V, Banerjee U. The hematopoietic stem cell and its niche: a comparative view. Genes Dev. 2007; 21(23): 3044-60. CrossRef
Scadden DT. The stem-cell niche as an entity of action. Nature. 2006; 441(7097): 1075-9. CrossRef
Zhang J, Li L. Stem cell niche: microenvironment and beyond. J Biol Chem. 2008; 283(15): 9499-503. CrossRef
He S, Nakada D, Morrison SJ. Mechanisms of stem cell self-renewal. Annu Rev Cell Dev Biol. 2009; 25(1): 377-406. CrossRef
Nat Rep Stem Cells Online [Internet]. Mullard A. Proliferation without differentiation [updated 2008; cited December 2, 2016]. Available from: http://www.nature.com/stemcells/2008/0801/080124/full/stemcells.2008.28.html. Link
Pauklin S, Vallier L. The cell-cycle state of stem cells determines cell fate propensity. Cell. 2013; 155(1): 135-47. CrossRef
Tsai RYL, McKay RD. A nucleolar mechanism controlling cell proliferation in stem cells and cancer cells. Genes Dev. 2002; 16(23): 2991-3003. CrossRef
Yuan TL, Cantley LC. PI3K pathway alterations in cancer: variations on a theme. Oncogene. 2008; 27(41): 5497-510. CrossRef
Gilson E, Géli V. How telomeres are replicated. Nat Rev Mol Cell Biol. 2007; 8(10): 825-38. CrossRef
Rossi DJ, Bryder D, Seita J, Nussenzweig A, Hoeijmakers J, Weissman IL. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature. 2007; 447(7145): 725-9. CrossRef
Lambrou GI, Remboutsika E. Proliferation versus regeneration: the good, the bad and the ugly. Front Physiol. 2014; 5: 10. doi: 10.3389/fphys.2014.00010. CrossRef
Sandhaanam SD, Pathalam G, Dorairaj S, Savariar V. Mesenchymal stem cells (MSC): identification, proliferation and differentiation. Peer J PrePrints. 2013; 1: e148v1. doi: 10.7287/peerj.preprints.148v1. CrossRef
Zhang J, Huang X, Wang H, Liu X, Zhang T, Wang Y, et al. The challenges and promises of allogeneic mesenchymal stem cells for use as a cell-based therapy. Stem Cell Res Ther. 2015; 6: 234. doi: 10.1186/s13287-015-0240-9. CrossRef
Djouad F, Plence P, Bony C, Tropel P, Apparailly F, Sany J, et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood. 2003; 102(10): 3837-44. CrossRef
Dittmar T, Seidel J, Zaenker KS, Niggemann B. Carcinogenesis driven by bone marrow-derived stem cells. Contrib Microbiol. 2006; 13: 156-69. CrossRef
Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause DS, et al. Minimal criteria for defining multipotentmesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006; 8(4): 315-7. CrossRef
Koltsova AM, Zenin VV, Yakovleva TK, Poljanskaya GG. Characterization of a novel mesenchymal stem cell line derived from human embryonic stem cells. Cell Tissue Biol. 2016; 10(1): 1-9. CrossRef
Williams AR, Hare JM. Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circ Res. 2011; 109(8): 923-40. CrossRef
Piscaglia AC. Stem cells, a two-edged sword: risks and potentials of regenerative medicine. World J Gastroenterol. 2008; 14(27): 4273. doi: 10.3748/wjg.14.4273. CrossRef
Marsafy SE, Larghero J, Bennaceur-Griscelli A, Turhan A. Mesenchymal stem cells: pivotal players in hematopoietic stem cell microenvironment. J Stem Cell Res Ther. 2014; 4: 225. doi: 10.4172/2157-7633.1000225. CrossRef
Ame-Thomas P, Maby-El Hajjami H, Monvoisin C, Jean R, Monnier D, Caulet-Maugendre S, et al. Human mesenchymal stem cells isolated from bone marrow and lymphoid organs support tumor B-cell growth: role of stromal cells in follicular lymphoma pathogenesis. Blood. 2007; 109(2): 693-702. CrossRef
Gao H, Priebe W, Glod J, Banerjee D. Activation of signal transducers and activators of transcription 3 and focal adhesion kinase by stromal cell-derived factor 1 is required for migration of human mesenchymal stem cells in response to tumor cell-conditioned medium. Stem Cells. 2009; 27: 857-65. CrossRef
DOI: https://doi.org/10.21705/mcbs.v1i1.12
Copyright (c) 2017 Cell and BioPharmaceutical Institute

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Indexed by:
Cell and BioPharmaceutical Institute