Naïve T Cells in Immunosuppression Diseases: Human Immunodeficiency Virus and Cytomegalovirus

Kent Wijaya Setiawan, Ferry Sandra


Dynamic changes of naïve T cells determine mature T cells activity in cell-mediated immune response. It is important to understand the mechanism of homeostasis maintenance affect response to novel antigen toward T cell receptor-major histocompatibility complex interaction. Most of the analysis of naïve T cells relies on flow cytometric immunophenotyping to observe surface antigen alteration within maturation stage. The combination of different surface molecules, such as the cluster of differentiation 62L (CD62L), C-C chemokine receptor type 7 (CCR7), CD27, CD28, and CD45, can give satisfied discrimination between naïve T cells and other subsets. This parameter can be used to monitor the dynamic change of naïve T cells in some chronic diseases, like human immunodeficiency virus (HIV) and cytomegalovirus (CMV). Most of the patient experience loss of naive T cells due to a chronic immune response, which related to apoptotic induction in proliferating cells by viral activity. Some pathogens trigger the migration of naive T cells into lymph nodes to facilitate direct contact with the host cells. The virus infects the cells, use cells proliferation to multiply, and induce apoptosis of host cells after the virions released. Alteration of naive T cells in chronic disease becomes a parameter to oversee the treatment and to determine the future prognosis of the disease. In highly active antiretroviral therapy for HIV infection, observation of naïve T cells and combination of surface molecules, CD45RO− and CD27+ is used to show the improvement and proliferation rate of total naïve T cells. On the other hand, the transformation of naïve T cells into CMV-specific T cells become really important in CMV prognosis. These conditions suggest that dynamic change of naïve T cells affect to the clinical condition of chronic disease patients.

Keywords: naïve T cells, immunophenotyping, HIV, CMV

Full Text:



Ogawa M. Differentiation and proliferation of hematopoietic stem cells. Blood. 1993; 81(11): 2844-53. Link

Halim D, Murti H, Sandra F, Boediono A, Djuwantono T, Setiawan B. Stem Cell: Dasar Teori dan Aplikasi Klinis. Jakarta: Erlangga; 2010. Link

Seita J, Weissman IL. Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdiscip Rev Syst Biol Med. 2010; 2(6): 640-53. CrossRef

LaFleur-Brooks M. Exploring medical language: a student-directed approach. 7th ed. St. Louis: Mosby Elsevier; 2008. Link

Orkin SH, Zon LI. Hematopoiesis: an evolving paradigm for stem cell biology. Cell. 2008; 132(4): 631-44. CrossRef

Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations. Annu Rev Immunol. 2010; 28: 445-89. CrossRef

Meiliana A, Wijaya A. Microparticles novel mechanism of intracellular communication: implication in health and disease. Indones Biomed J. 2009; 3(1): 18-36. CrossRef

Sprent J, Surh CD. Normal T cell homeostasis: the conversion of naïve cells into memory-phenotype cells. Nat Immunol. 2011; 12(6): 478-84. CrossRef

Berard M, Tough DF. Qualitative differences between naїve and memory T cells. Immunology. 2002; 106(2): 127-38. CrossRef

Park CO, Kupper TS. The emerging role of resident memory T cells in protective immunity and inflammatory disease. Nat Med. 2015; 21(7): 688-97. CrossRef

Faint JM, Annels NE, Curnow SJ, Shields P, Pilling D, Hislop AD, et al. Memory T cells constitute a subset of the human CD8+CD45RA+ pool with distinct phenotypic and migratory characteristics. J Immunol. 2001; 167(1): 212-20. CrossRef

Leitao C, Freitas AA, Garcia S. The role of TCR specificity and clonal competition during reconstruction of the peripheral T cell pool. J Immunol. 2009; 182(9): 5232-9. CrossRef

Hataye J, Moon JJ, Khoruts A, Reilly C, Jenkins MK. Naive and memory CD4+ T cell survival controlled by clonal abundance. Science. 2006; 312(5770): 114-6. CrossRef

Takada K, Jameson SC. Naive T cell homeostasis: from awareness of space to a sense of place. Nat Rev Immunol. 2009; 9(12): 823-32. CrossRef

Hao Y, Legrand N, Freitas AA. The clone size of peripheral CD8 T cells is regulated by TCR promiscuity. J Exp Med. 2006; 203(7): 1643-9. CrossRef

Agenes F, Dangy JP, Kirberg J. Cell receptor contact to restricting MHC molecules is a prerequisite for peripheral interclonal T cell competition. J Exp Med. 2008; 205(12): 2735-43. CrossRef

Azzam HS, DeJarnette JB, Huang K, Emmons R, Park CS, Sommers CL, et al. Fine tuning of TCR signaling by CD5. J Immunol. 2001; 166(9): 5464-72. CrossRef

Stefanova I, Dorfman JR, Germain RN. Self recognition promotes the foreign antigen sensitivity of naive T lymphocytes. Nature. 2002; 420(6914): 429-34. CrossRef

Smith K, Seddon B, Purbhoo MA, Zamosyka R, Fisher AG, Merkenschlager M. Sensory adaptation in naive peripheral CD4 T cells. J Exp Med. 2001; 194(9): 1253-61. CrossRef

Takada K, Jameson SC. Self class-I MHC molecules support survival of naïve CD8 T cells but depress their functional sensitivity through regulation of CD8 expression levels. J Exp Med. 2009; 206(10): 2253-69. CrossRef

Jabbari A, Harty JT. Cutting edge: differential self-peptide/MHC requirement for maintaining CD8 T cell function versus homeostatic proliferation. J Immunol. 2005; 175(8): 4829-33. CrossRef

Fischer UB, Jacovetty EL, Medeiros RB, Goudy BD, Zell T, Swanson JB, et al. MHC class II deprivation impairs CD4 T cell motility and responsiveness to antigen-bearing dendritic cells in vivo. Proc Natl Acad Sci U S A. 2007; 104(17): 7181-6. CrossRef

Berg EL, Robinson MK, Warnock RA, Butcher EC. The human peripheral lymph node vascular addressin is a ligand for LECAM-1, the peripheral lymph node homing receptor. J Cell Biol. 1991; 114(2): 343-9. CrossRef

Unsoeld H, Pircher H. Complex memory T-cell phenotypes revealed by coexpression of CD62L and CCR7. J Virol. 2005; 79(7): 4510-3. CrossRef

Goldrath AW, Bogatzki LY, Bevan MJ. Naïve T cells transiently acquire a memory-like phenotype during homeostasis-driven proliferation. J Exp Med. 2000; 192(4): 557-64. CrossRef

Tomiyama H, Matsuda T, Takiguchi M. Differentiation of human CD8+ T cells from a memory to memory/effector phenotype. J Immunol. 2002; 168(11): 5538-50. CrossRef

Appay V, van Lier RA, Sallusto F, Roederer M. Phenotype and function of human T lymphocyte subsets: consensus and issues. Cytometry. 2008; 73(11): 975-83. CrossRef

Arens R, Tesselaar K, Baars PA, van Schijndel GM, Hendriks J, Pals ST, et al. Constitutive CD27/CD70 interaction induces expansion of effector-type T cells and results in IFNgamma-mediated B cell depletion. Immunity. 2001; 15(5): 801-12. CrossRef

Wills MR, Okecha G, Weekes MP, Gandhi MK, Sissons PJG, Carmichael AJ. Identification of naïve or antigen-experienced human CD8+ T cells by expression of costimulation and chemokine receptors: analysis of the human cytomegalovirus-specific CD8+ T cell response. J Immunol. 2002; 168(11): 5455-64. CrossRef

Nociari MM, Telford W, Russo C. Post-thymic development of CD28-CD8+ T cell subset: age-associated expansion and shift from memory to naïve phenotype. J Immunol. 1999; 162(6): 3327-35. Link

Heise ER. Diseases associated with immunosupression. Environ Health Perspect. 1982; 43: 9-19. CrossRef

Al-Herz W, Bousfiha A, Cassanova JL, Chatila T, Conley ME, Cunningham-Rundles C, et al. Primary immunodeficiency diseases: an update on the classification from the International Union of Immunological Societies Expert Committee for Primary Immunodeficiency. Front Immunol. 2014; 5: 162. doi: 10.3389/fimmu.2014.00162. CrossRef

Nikolich-Zugich J. T cell aging: naïve but not young. J Exp Med. 2005; 201(6): 837-40. CrossRef

Hermawan AG. Development of immunopathobiogenesis on SIRS-sepsis. Indones Biomed J. 2009; 1(1): 32-9. CrossRef

Eaton SM, Burns EM, Kusser K, Randall TD, Haynes L. Age-related defects in CD4 T cell cognate helper function lead to reductions in humoral responses. J Exp Med. 2004; 200(12): 1613–22. CrossRef

Messele T, Abdulkadir M, Fontanet AL, Petros B, Hamann D, Koot M, et al. Reduced naïve and increased activated CD4 and CD8 cells in healthy adult Ethiopians compared with their Dutch counterparts. Clin Exp Immunol 1999; 115(3): 443-50. CrossRef

Ben-Smith A, Gorak-Stolinska P, Floyd S, Weir SE, Lalor MK, Mvula H, et al. Differences between naïve and memory T cell phenotype in Malawian and UK adolescents: a role for cytomegalovirus?. BMC Infect Dis. 2008; 8: 139. doi: 10.1186/1471-2334-8-139. CrossRef

Champagne P, Ogg GS, King AS, Knabenhans C, Ellefsen K, Nobile M, et al. Skewed maturation of memory HIV-specific CD8 T lymphocytes. Nature. 2001; 410(6824): 106-11. CrossRef

Angelo ALD, Angelo CD, Torres AJL, Ramos AM, Lima M, Netto EM, et al. Evaluating total lymphocyte counts as a substitute for CD4 counts in the follow up of AIDS patients. Braz J Infect Dis. 2007; 11(5): 466-470. CrossRef

Douek DC, McFarland RD, Keiser PH, Gage EA, Massey JM, Haynes BF, et al. Changes in thymic function with age and during the treatment of HIV infection. Nature. 1998; 396(6712): 690-5. CrossRef

Mascio MD, Sereti I, Matthews LT, Natarajan V, Adelsberger J, Lempicki R, et al. Naïve T-cell dynamics in human immunodeficiency virus type 1 infection: effects of highly active antiretroviral therapy provide insights into the mechanisms of naïve T-cell depletion. J Virol. 2006; 80(6): 2665-74. CrossRef

Hazenberg MD, Hamann D, Schuitemaker H, Miedema F. T cell depletion in HIV-1 infection: how CD4+ T cells go out of stock. Nat Immunol. 2000; 1(4): 285-9. CrossRef

Dutilh BE, de Boer RJ. Decline in excision circles requires homeostatic renewal or homeostatic death of naïve T cells. J Theor Biol. 2003; 224(3): 351-8. CrossRef

Zhang ZQ, Notermans DW, Sedgewick G, Cavert W, Wietgrefe S, Zupancic M, et al. Kinetics of CD4+ T cell repopulation of lymphoid tissues after treatment of HIV-1 infection. Proc Natl Acad Sci U S A. 1998; 95(3): 1154-9. Link

Wang L, Chen JJ, Gelman BB, Konig R, Cloyd MW. A novel mechanism of CD4 lymphocyte depletion involves effects of HIV on resting lympho-cytes: induction of lymph node homing and apoptosis upon sec-ondary signaling through homing receptors. J Immunol. 1999; 162(1): 268-76. Link

Ho DD. Perspective series: host/pathogen interactions. Dynamics of HIV-1 replication in vivo. J Clin Invest. 1997; 99(11): 2565-7. CrossRef

Bajaria SH, Webb G, Cloyd M, Kirschner D. Dynamics of naïve and memory CD4+ T lymphocytes in HIV-1 disease progression. J Acquir Immune Defic Syndr. 2002; 30(1): 41-58. Link

Zerbato J, Sluis-Cremer N. HIV Infection of naïve CD4+ T cells: an important reservoir of persistent HIV infection?. J Antivir Antiretrovir. 2013; S10: e001. doi: 10.4172/jaa.S10-e001. CrossRef

Rafailidis PI, Mourtzoukou EG, Varbobitis IC, Falagas ME. Severe cytomegalovirus infection in apparently immunocompetent patients: a systematic review. Virol J. 2008; 5: 47. doi: 10.1186/1743-422X-5-47. CrossRef

Fletcher JM, Vukmanovic-Stejic M, Dunne PJ, Birch KE, Cook JE, Jack-son SE, et al. Cytomegalovirus-specific CD4+ T cells in healthy carriers are continuously driven to replicative exhaustion. J Immunol. 2005; 175(12): 8218-25. CrossRef

Khan N, Shariff N, Cobbold M, Bruton R, Ainsworth JA, Sinclair AJ, et al. Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals. J Immunol. 2002; 169(4): 1984-92. CrossRef

Sylwester AW, Mitchell BL, Edgar JB, Taormina C, Pelte C, Ruchti F, et al. Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T-cells dominate the memory compartments of exposed subjects. J Exp Medic. 2005; 202(5): 673-85. CrossRef

Bruunsgaard H, Pedersen M, Pedersen BK. Aging and proinflammatory cytokines. Curr Opin Hematol. 2001; 8(3): 131-6. Link

Cicin-Sain L, Sylwester AW, Hagen SI, Siess DC, Currier N, Legasse AW, et al. Cytomegalovirus-specific T cell immunity is maintained in immunosenescent rhesus macaques. J Immunol. 2011; 187(4): 1722-32. CrossRef

Ellefsen K, Harari A, Champagne P, Bart PA, Sekaly RP, Pantaleo G. Distribution and functional analysis of memory antiviral CD8 T cell responses in HIV-1 and cytomegalovirus infections. Eur J Immunol. 2002; 32(12): 3756-64. CrossRef

Pan X, Baldauf H, Keppler OT, Fackler OT. Restrictions to HIV-1 replication in resting CD4+ T lymphocytes. Cell Res. 2013; 23(7): 876-85. CrossRef

Andersson J, Fehniger TE, Patterson BK, Pottage J, Agnoli M, Jones P, et al. Early reduction of immune activation in lymphoid tissue following highly active HIV therapy. AIDS. 1998; 12: F123-9. Link

Rabin RL, Roederer M, Maldonado Y, Petru A, Herzenberg LA. Altered representation of naïve and memory CD8 T cell subsets in HIV-infected children. J Clin Invest. 1995; 95(5): 2054-60. CrossRef

Li Q, Duan L, Estes JD, Ma ZM, Rourke T, Wang Y, et al. Peak SIV replication in resting memory CD4 T cells depletes gut lamina propria CD4 T cells. Nature. 2005; 434(7037): 1148-52. CrossRef

Link A, Vogt TK, Favre S, Britschgi MR, Acha-Orbea H, Hinz B, et al. Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naïve T cells. Nat Immunol. 2007; 8(11): 1255-65. CrossRef

Zeng M, Smith AJ, Wietgrefe SW, Southern PJ, Schacker TW, Reilly CS, et al. Cumulative mechanisms of lymphoid tissue fibrosis and T cell depletion in HIV-1 and SIV infections. J Clin Invest. 2011; 121(13): 998-1008. CrossRef

Zeng M, Southern PJ, Reilly CS, Beilman GJ, Chipman JG, Schacker TW, et al. Lymphoid tissue damage in HIV-1 infection depletes naïve T cells and limits T cell reconstitution after antiretroviral therapy. PLoS Pathog. 2012; 8(1): e1002437. doi:10.1371/journal.ppat.1002437. CrossRef

Leone A, Rohankhedkar M, Okoye A, Legasse A, Axthelm MK, Villinger F, et al. Increased CD4+ T cell levels during IL-7 administration of antiretroviral therapy-treated simian immunodeficiency virus-positive macaques are not dependent on strong proliferative responses. J Immunol. 2010; 185(3): 1650-9. CrossRef

Levy Y, Lacabaratz C, Weiss L, Viard JP, Goujard C, Levievre JD, et al. Enhanced T cell recovery in HIV-1-infected adults through IL-7 treatment. J Clin Invest. 2009; 119(4): 997-1007. CrossRef

Barrett JA. T-cell therapy for viral infections following transplantation: why stop at three viruses?. Mol Ther. 2012; 20(8): 1487-8. CrossRef

Hanley PJ, Melenhorst JJ, Nikiforow S, Scheinberg P, Blaney JW, Demmler-Harrison G, et al. CMV-specific t-cells generated from naïve T-cells recognize atypical epitopes and may be protective in vivo. Sci Transl Med. 2015; 7(285): 285ra63. doi: 10.1126/scitranslmed.aaa2546. CrossRef

Holtappels R, Simon CO, Munks MW, Thomas D, Deegen P, Kuhnapfel B, et al. Subdominant CD8 T-cell epitopes account for protection against cytomegalovirus independent of immunodomination. J Virol. 2008; 82(12): 5781-96. CrossRef

Kaul R, Dong T, Plummer FA, Kimani J, Rostron T, Kiama P, et al. CD8(+) lymphocytes respond to different HIV epitopes in seronegative and infected subjects. J Clin Invest. 2001; 107(10): 1303-10. CrossRef

Berger C, Jensen MC, Lansdorp PM, Gough M, Elliott C, Riddell SR. Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J Clin Invest. 2008; 118(1): 294-305. Link


Indexed by:




Cell and BioPharmaceutical Institute