Microbiome in Oral Squamous Cell Carcinoma: Mechanisms and Signaling Pathways

Nurani Hayati, Caesary Cloudya Panjaitan, Ferry Sandra

Abstract


Oral squamous cell carcinoma is part of head and neck squamous cell carcinoma which is the ultimate cause of morbidity and mortality in cancer. The alteration of microbial community in the saliva might act as a helpful marker for the prediction, detection and prognosis oral cancer, particularly the transition of cancer precursor lesion. There are three mechanisms of action of oral microbiota in cancer pathogenesis, chronic inflammation of bacterial stimulation, carcinogenesis by cytoskeletal rearrangements, and carcinogenic substances that produced by microorganisms. Changes in the composition of microbiota could therefore have the potential to be used as a significant oral biomarker to predict the pathological transition from oral epithelial precursor lesion to cancer.

Keywords: microbiome, oral cancer cellular proliferation, microorganism, oral cancer, oral squamous cell carcinoma


Full Text:

PDF

References


Chattopadhyay I, Verma M, Panda M. Role of oral microbiome signatures in diagnosis and prognosis of oral cancer. Technol Cancer Res Treat. 2019; 18: 153303381986735, CrossRef.

Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008 : GLOBOCAN 2008. Int J Cancer. 2010; 127(12): 2893-2917. , CrossRef.

Lee WH, Chen HM, Yang SF, Liang C, Peng CY, Lin FM, et al. Bacterial alterations in salivary microbiota and their association in oral cancer. Sci Rep. 2017; 7(1): 1-11, CrossRef.

Schmidt BL, Kuczynski J, Bhattacharya A, Huey B, Corby PM, Queiroz ELS, et al. Changes in abundance of oral microbiota associated with oral cancer. PLoS One. 2014;9(6): e98741, CrossRef.

Karpinski TM. Role of oral microbiota in cancer development. Microorganisms. 2019; 7(1): 20, CrossRef.

Takahashi Y, Park J, Hosomi K, Yamada T. Analysis of oral microbiota in Japanese oral cancer patients using 16S rRNA sequencing. J Oral Biosci. 2019; 61(2): 120-8, CrossRef.

Warnakulasuriya S. Global epidemiology of oral and oropharyngeal cancer. J Oral Oncol. 2009; 45(4-5): 309-316, CrossRef.

Purwanto DJ, Soedarsono N, Reuwpassa JO, Adisasmita AC, Ramli M, Djuwita R. The prevalence of oral High-risk HPV infection in Indonesian oral squamous cell carcinoma patients. Oral Dis. 2020; 26(1): 72-80, CrossRef.

Lamont RJ, Jenkinson HF. Oral Microbiology at a Glance. Chichester, West Sussex: Wiley-Blackwell; 2010, article.

Zaura E, Keijser BJF, Huse SM, Crielaard W. Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiol. 2009;12(9): 259, CrossRef.

Avila M, Ojcius DM, Yilmaz Ö. The oral microbiota: living with a permanent guest. DNA Cell Biol. 2009; 28(8): 405-11, CrossRef.

Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, et al. Commensal bifidobacterium promotes antitumor immunity and facilitates anti – PD-L1 efficacy. Science. 2015; 350(6264): 1084-9, CrossRef.

Narikiyo M, Tanabe C, Yamada Y, Igaki H, Tachimori Y, Kato H, et al. Frequent and preferential infection of Treponema denticola, Streptococcus mitis, and Streptococcus anginosus in esophageal cancers. Cancer Sci. 2004; 95(7): 569-74, CrossRef.

Meurman JH. Oral microbiota and cancer. J Oral Microbiol. 2010; 2: 5195, CrossRef.

Shiga K, Tateda M, Salto S, Hori T, Sato I. Presence of Streptococcus infection in extra-oropharyngeal head and neck squamous cell carcinoma and its implication in carcinogenesis. Oncol Rep. 2001; 8(2): 245-8, CrossRef.

Amer A, Galvin S, Healy CM, Moran GP. The microbiome of potentially malignant oral leukoplakia exhibits enrichment for Fusobacterium, Leptotrichia, Campylobacter, and Rothia Species. Front Microbiol. 2017; 8: 2391, CrossRef.

Mager D, Haffajee A, Devlin P, Norris C, Goodson J. The salivary microbiota as a diagnostic indicator of oral cancer: A descriptive, non-randomized study of cancer-free and oral. J Transl Med. 2005; 3: 27, CrossRef.

Syrjänen S, Syrjänen K. HPV in head and neck carcinomas: different HPV profiles in oropharyngeal carcinomas - why? Acta Cytol. 2019; 63(2): 124-42, CrossRef.

Yete S, Souza WD, Saranath D. High-risk human papillomavirus in oral cancer : clinical implications. Oncology. 2017; 94(3): 133-41, CrossRef.

Gillison ML. Human papillomavirus – associated head and neck cancer is a distinct epidemiologic, clinical, and molecular entity. Semin Oncol Elsevier. 2004; 31(6): 744-54, CrossRef.

Zhang Y, Wang X, Yan F. Human oral microbiota and its modulation for oral health. Biomed Pharmacother. 2018; 99: 883-93, CrossRef.

Szkaradkiewicz AK, Karpiński TM. Microbiology of chronic periodontitis. J Biol Earth Sci. 2013; 3(1): 14-20, article.

Afifah E, Mozef T, Sandra F, Arumwardana S, Rihibiha DD, Nufus H, et al. Induction of matrix metalloproteinases in chondrocytes by interleukin IL-1β as an osteoarthritis model. J Math Fund Sci. 2019; 51(2): 103-11, CrossRef.

Hou L, Liu C, Liu B, Lin SJ, Liao CS, Rossomando EF. Interleukin-1B, clinical parameters and matched changes of biopsied gingival tissue from periodontitis patients. J Periodont Res. 2003; 38(3): 247-54, CrossRef.

Carmi Y, Dotan S, Rider P, Kaplanov I, White MR, Baron R, et al. The role of IL-1 β in the early tumor cell-induced angiogenic response. J Immunol. 2013; (190): 3500-9, CrossRef.

Wang F, Liu H, Liu S, Tang S, Yang L, Feng G. SHP-2 promoting migration and metastasis of MCF-7 with loss of E-cadherin, dephosphorylation of FAK and secretion of MMP-9 induced by IL-1 b in vivo and in vitro. Breats Cancer Res Treat. 2005; 89(1): 5-14, CrossRef.

Voronov E, Shouval DS, Krelin Y, Cagnano E, Benharroch D, Iwakura Y, et al. IL-1 is required for tumor invasiveness and angiogenesis. Prod Natl Acad Sci. 2002; 100(5): 2645-50, CrossRef.

Sandra F, Kukita T, Tang QY, lijima T. Cafeic acid inhibits NFkB activation of osteoclastogenesis signaling pathway. Indones Biomed J 2011; 3(3): 216-22, CrossRef.

Sandra F, Kukita T, Muta T, Iijima T. Caffeic acid inhibited receptor activator of nuclear factor κB ligand (RANKL)-tumor necrosis factor (TNF) α-TNF receptor associated factor (TRAF) 6 induced osteoclastogenesis pathway. Indones Biomed J. 2013; 5(3): 173-8, CrossRef.

Ketherin, Sandra F. Osteoclastogenesis in periodontitis: signalling pathway, synthetic and natural inhibitors. Mol Cell Biomed Sci. 2018; 2(1): 11-8, CrossRef.

Gabay C. Interleukin-6 and chronic inflammation. Arthritis Res Ther. 2006; 8(Suppl 2): S3, CrossRef.

Sandra F, Briskila J, Ketherin. RANKL and TNF-a-induced JNK/SAPK osteoclastogenic signaling pathway was inhibited by caffeic acid in RAW-D cells. Indones J Cancer Chemoprevent. 2018; 9(2): 63-7, CrossRef.

Murata M, Thanan R, Ma N, Kawanishi S. Role of nitrative and oxidative DNA damage in inflammation-related carcinogenesis. J Biomed Biotechnol. 2012; 2012: 623019, CrossRef.

Haura EB, Turkson J, Jove R. Mechanisms of disease: insights into the emerging role of signal transducers and activators of transcription in cancer pathways. Nat Rev Clin Oncol. 2005; 2(6): 315-24, CrossRef.

Rivas MA, Carnevale RP, Proietti CJ, Rosemblit C, Beguelin W, Salatino M, et al. TNF α acting on TNFR1 promotes breast cancer growth via p42/P44 MAPK, JNK, Akt and NF-κB-dependent pathways. Exp Cell Res. 2008; 314(3): 509-29, CrossRef.

Sandra F, Matsuki NA, Takeuchi H, Ikebe T, Kanematsu T, Ohishi M, Hirata M. TNF inhibited the apoptosis by activation of Akt serine/threonine kinase in the human head and neck squamous cell carcinoma. Cell Signal. 2002; 14(9): 771-8, CrossRef.

Yan B, Wang H, Rabbani ZN, Zhao Y, Li W, Yuan Y, et al. Tumor necrosis factor-A is a potent endogenous mutagen that promotes cellular transformation. Cancer Res. 2006; 66(24): 11565-71, CrossRef.

Wicaksono BD, Tangkearung E, Sandra F. Brucea javanica Leaf Extract Induced Apoptosis in Human Oral Squamous Cell Carcinoma (HSC2) Cells by Attenuation of Mitochondrial Membrane Permeability. Indones Biomed J. 2015; 7(2): 107-10, CrossRef.

Rizal MI, Sandra F. Brucea javanica Leaf Extract Activates Caspase-9 and Caspase-3 of Mitochondrial Apoptotic Pathway in Human Oral Squamous Cell Carcinoma. Indones Biomed J. 2016; 8(1): 43-8, CrossRef.

Inaba H, Sugita H, Kuboniwa M, Iwai S, Hamada M, Noda T, et al. Porphyromonas gingivalis promotes invasion of oral squamous cell carcinoma through induction of proMMP9 and its activation. Cell Microbiol. 2014; 16(1): 131-45, CrossRef.

Chen R, Alvero AB, Silasi D, Mor G. Inflammation, cancer and chemoresistance: taking advantage of the toll-like receptor signaling pathway. Am J Reprod Immunol. 2006; 57(2): 93-107, CrossRef.

Gholizadeh P, Eslami H, Youse M, Asgharzadeh M. Role of oral microbiome on oral cancers, a review. Biomed Pharmacother. 2016; 84: 552-8, CrossRef.

Gholizadeh P, Eslami H, Kafil H. Carcinogenesis mechanisms of Fusobacterium nucleatum. Biomed Pharmacother. 2017; 89: 918-25, CrossRef.

Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/B-catenin signaling via its FadA Adhesin. Cell Host Microbe. 2013; 14(2): 195-206, CrossRef.

Pavlova SI, Jin L, Gasparovich SR, Tao L, Tao L. Multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase causing excessive acetaldehyde production from ethanol by oral streptococci Printed in Great Britain. Microbiology. 2013; 159(7): 1437-46, CrossRef.

Hooper SJ, Crean S, Fardy MJ, Lewis MAO, Spratt DA, Wade WG, et al. A molecular analysis of the bacteria present within oral squamous cell carcinoma. J Med Microbiol. 2007; 56(12): 1651-9, CrossRef.

Lunt SJ, Chaudary N, Hill RP. The tumor microenvironment and metastatic disease. Clin Exp Metastasis. 2009; 26(1): 19-34, CrossRef.

Milella L. The negative effects of volatile sulphur compounds. J Vet Dent. 2015; 32(2): 99-102, CrossRef.

Calenic B, Yaegaki K, Murata T, Imai T, Aoyama I, Sato T, et al. Oral malodorous compound triggers mitochondrial-dependent apoptosis and causes genomic DNA damage in human gingival epithelial cells. J Periodont. 2010; 45(1): 31-7, CrossRef.

Wu D, Si W, Wang M, Lv S, Ji A, Li Y. Hydrogen sulfide in cancer: Friend or foe? Nitric Oxide. 2015; 50: 38-45, CrossRef.

Wang M, Ding Y, Chen Y. The hydrogen sulfide donor NaHS promotes angiogenesis in a rat model of hind limb ischemia. Antioxid Redox Signal. 2010; 12(9): 1065-77, CrossRef.

Szabo C, Coletta C, Chao C, Módis K, Szczesny B, Papapetropoulos A. Tumor-derived hydrogen sulfide, produced by cystathionine- β-synthase, stimulates bioenergetics, cell proliferation, and angiogenesis in colon cancer. Prod Natl Acad Sci. 2013; 110(30): 12474-9, CrossRef.

Bhattacharyya S, Saha S, Giri K, et al. Cystathionine beta-synthase (CBS) contributes to advanced ovarian cancer progression and drug resistance. PLoS One. 2013; 8(11); e79167, CrossRef.

Ma Z, Bi Q, Wang Y. Hydrogen sulfide accelerates cell cycle progression in oral squamous cell carcinoma cell lines. Oral Dis. 2014; 21(2): 156-62, CrossRef.

Gaonkar P, Patankar S, Tripathi N, Sridharan G. Oral bacteria flora and oral cancer : the possible link? J oral Maxillofac Pathol. 2018; 22(2): 234-8, CrossRef.

Whitmore SE, Lamont RJ. Oral bacteria and cancer. PLoS Pathog. 2014; 10(3): 1-4, CrossRef.




DOI: https://doi.org/10.21705/mcbs.v4i2.160

Indexed by:

                     

                    

                    


Cell and BioPharmaceutical Institute