Choline-deficient High-fat Diet-induced Steatohepatitis in BALB/c Mice

Saut Horas Hatoguan Nababan, Seruni Tyas Khairunissa, Erni Erfan, Nafrialdi Nafrialdi, Ening Krisnuhoni, Irsan Hasan, Rino Alvani Gani


Background: Non-alcoholic steatohepatitis (NASH) is an expanding cause of chronic liver disease worldwide, including Indonesia, with higher risk progression to cirrhosis and hepatocellular carcinoma. Preclinical experiments using several mice models have been conducted to clarify its complex pathogenesis. This study was designed to investigate whether BALB/c mice on a choline-deficient high-fat diet can be used as a model for NASH.

Materials and Methods: BALB/c male mice were fed choline-deficient L-amino acid-defined high-fat diet (CDAHFD) or a standard diet for six weeks. The body and liver weights, liver histology, and plasma biochemistry were analyzed. The relative expression levels of tumor necrosis factor (TNF)α, transforming growth factor (TGF)β1, collagen-1α1 (COL1α1), glutathione peroxidase 1 (GPx1), and uncoupling protein 2 (UCP2) genes in the livers were analyzed using a two-step real time-polymerase chain reaction. Liver fatty acids composition was analyzed using gas chromatography with flame ionization detector (GC-FID).

Results: CDAHFD induced steatohepatitis in BALB/c mice with increased plasma levels of alanine aminotransferase. The liver of CDAHFD-fed BALB/c mice showed upregulated relative expression levels of TNFα, TGFβ1, COL1α1, GPx1, and UCP2 genes. The liver fatty acid analysis showed a significant accumulation of saturated fatty acids (SFAs) and an increased ratio of n-6/n-3 polyunsaturated fatty acids (PUFAs) in the livers of CDAHFD-fed BALB/c mice.

Conclusion: This study suggests that CDAHFD can induce steatohepatitis in BALB/c mice and therefore may be used as NASH mice model.

Keywords: steatohepatitis, fatty liver, choline-deficient high fat diet, BALB/c


Full Text:



Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease—meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016; 64(1): 73-84, CrossRef.

Amarapurkar DN, Hashimoto E, Lesmana LA, Sollano JD, Chen PJ, Goh KL, et al. How common is non-alcoholic fatty liver disease in the Asia–Pacific region and are there local differences? J Gastroenterol Hepatol. 2007; 22(6): 788-93, CrossRef.

Byrne CD, Targher G. NAFLD: a multisystem disease. J Hepatol. 2015; 62(1 Suppl): S47-64, CrossRef.

Caligiuri A, Gentilini, A, Marra, F. Molecular pathogenesis of NASH. Int J Mol Sci. 2016; 17(1575): 1-34, CrossRef.

Ito M, Suzuki J, Tsujioka S, Sasaki M, Gomori A, Shirakura T, et al. Longitudinal analysis of murine steatohepatitis model induced by chronic exposure to high-fat diet. Hepatol Res. 2007; 37(1): 50-7, CrossRef.

Van Herck MA, Vonghia L, Francque SM. Animal models of nonalcoholic fatty liver disease – a starter’s guide. Nutrients. 2017; 9(10): 1072, CrossRef.

Maina V, Sutti S, Locatelli I, Vidali M, Mombello C, Bozzola C, et al. Bias in macrophage activation pattern influences non-alcoholic steatohepatitis (NASH) in mice. Clin Sci (Lond). 2012; 122(11): 545-53, CrossRef.

Jovicic N, Jeftic I, Jovanovic I, Radosavljevic G, Arsenijevic N, Lukic ML, et al. Differential immunometabolic phenotype in Th1 and Th2 dominant mouse strains in response to high-fat feeding. PLoS One. 2015; 10 (7): e0134089, CrossRef.

Nababan SHH, Nishiumi S, Kawano Y, Kobayashi T, Yoshida M, Azuma T. Adrenic acid as an inflammation enhancer in non-alcoholic fatty liver disease. Arch Biochem Biophys. 2017; 623-624: 64-75, CrossRef.

Matsumoto M, Hada N, Sakamaki Y, Uno A, Shiga T, Tanaka C, et al. An improved mouse model that rapidly develops fibrosis in non-alcoholic steatohepatitis. Int J Exp Pathol. 2017; 94(2): 93-103, CrossRef.

National Research Council. Guide for the Care and Use of Laboratory Animals: Eighth Edition. Washington DC: The National Academies Press; 2011, article.

Nishikawa S, Yasoshima A, Doi K, Nakayama H, Uetsuka K. Involvement of sex, strain and age factors in high fat diet-induced obesity in C57BL/6J and BALB/cA mice. Exp. Anim. 2007; 56(4): 263-272, CrossRef.

Maina V, Sutti S, Vidali M, Bozzola C, Mombello C, Boldorini R, et al. Strain differences in mice susceptibility to steatohepatitis induced by methionine/choline deficient diet underscore a role of immune mechanism in NASH. J Hepatol. 2010; 52 (Supplement 1): S308, CrossRef.

Chiba T, Suzuki S, Sato Y, Itoh T, Umegaki K. Evaluation of methionine content in a high-fat and choline-deficient diet on body weight gain and the development of non-alcoholic steatohepatitis in mice. PLoS One. 2016;11(10): e0164191, CrossRef.

Macfarlane DP, Zou X, Andrew R, Morton NM, Livingstone DEW, Aucott RL, et al. Metabolic pathways promoting intrahepatic fatty acid accumulation in methionine and choline deficiency: implications for the pathogenesis of steatohepatitis. Am J Physiol Endocrinol Metab. 2011; 300(2): E402-9, CrossRef.

Lesmana CR, Hasan I, Budihusodo U, Gani RA, Krisnuhoni E, Akbar N, et al. Diagnostic value of a group of biochemical markers of liver fibrosis in patients with non-alcoholic steatohepatitis. J Dig Dis. 2009; 10(3): 201-6, CrossRef.

Stojsavljević S, Palčić MG, Jukić LV, Duvnjak LS, Duvnjak M. Adipokines and proinflammatory cytokines, the key mediators in the pathogenesis of nonalcoholic fatty liver disease. World J Gastroenterol. 2014; 20(48): 18070-91, CrossRef.

Du J, Ma YY, Yu CH, Li YM. Effects of pentoxifylline on nonalcoholic fatty liver disease: a meta-analysis. World J Gastroenterol. 2014; 20(2): 569-77, CrossRef.

Cayón A, Crespo J, Mayorga M, Guerra A, Pons-Romero F. Increased expression of Ob-Rb and its relationship with the overexpression of TGF-beta1 and the stage of fibrosis in patients with nonalcoholic steatohepatitis. Liver Int. 2006; 26(9): 1065-71, CrossRef.

Sircana A, Paschetta E, Saba F, Molinaro F, Musso G. Recent insight into the role of fibrosis in nonalcoholic steatohepatitis-related hepatocellular carcinoma. Int J Mol Sci. 2019; 20(7): 1745, CrossRef.

Yang L, Roh YS, Song J, Zhang B, Liu C, Loomba R, et al. TGF-β signaling in hepatocytes participates in steatohepatitis through regulation of cell death and lipid metabolism. Hepatology. 2014; 59(2): 483-95, CrossRef.

Jarukamjorn K, Jearapong N, Pimson C, Chatuphonprasert W. A high-fat, high-fructose diet induces antioxidant imbalance and increases the risk and progression of nonalcoholic fatty liver disease in mice. Scientifica (Cairo). 2016; 2016: 5029414, CrossRef.

Ore A, Akinloye OA. Oxidative stress and antioxidant biomarkers in clinical and experimental models of non-alcoholic fatty liver disease. Medicina (Kaunas). 2019; 55(2): 26, CrossRef.

Kumar A, Sharma A, Duseja A, Das A, Dhiman RK, Chawlaet YK, et al. Patients with nonalcoholic fatty liver disease (NAFLD) have higher oxidative stress in comparison to chronic viral hepatitis. J Clin Exp Hepatol. 2013; 3(1): 12-8, CrossRef.

Serviddio G, Bellanti F, Tamborra R, Rollo T, Capitanio N, Romano AD, et al. Uncoupling protein-2 (UCP2) induces mitochondrial proton leak and increases susceptibility of nonalcoholic steatohepatitis (NASH) liver to ischaemia–reperfusion injury. Gut. 2008; 57(7): 957-65, CrossRef.

Mansouri A, Gattolliat CH, Asselah T. Mitochondrial dysfunction and signaling in chronic liver diseases. Gastroenterology. 2018; 155(3): 629-47, CrossRef.

Chiappini F, Coilly A, Kadar H, Gual P, Tran A, Desterke C, et al. Metabolism dysregulation induces a specific lipid signature of nonalcoholic steatohepatitis in patients. Sci Rep. 2017; 7(46658): 1-17, CrossRef.

Yamada K, Mizukoshi E, Sunagozaka H, Arai K, Yamashita T, Takeshita Y, et al. Characteristics of hepatic fatty acid compositions in patients with nonalcoholic steatohepatitis. Liver Int. 2015; 35(2): 582-90, CrossRef.

Csak T, Ganz M, Pespisa J, Kodys K, Dolganiuc A, Szabo G. Fatty acid and endotoxin activate inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells. Hepatology. 2011; 54(1): 133-44, CrossRef.

Feldstein AE, Werneburg NW, Canbay A, Guicciardi ME, Bronk SF, Rydzewski R, et al. Free fatty acids promote hepatic lipotoxicity by stimulating TNFα expression via a lysosomal pathway. Hepatology. 2004; 40(1): 185-94, CrossRef.

Joshi-Barve S, Barve SS, Amancherla K, Gobejishvili L, Hill D, Cave M, et al. Palmitic acid induces production of proinflammatory cytokine interleukin-8 from hepatocytes. Hepatology. 2007; 46(3): 823-30, CrossRef.

Leamy AK, Egnatchik RA, Young JD. Molecular mechanisms and the role of saturated fatty acids in the progression of non-alcoholic fatty liver disease. Prog Lipid Res. 2013; 52(1): 165-74, CrossRef.

Zhang Y, Xue R, Zhang Z, Yang X, Shi H. Palmitic and linoleic acids induce ER stress and apoptosis in hepatoma cells. Lipids Health Dis. 2012; 11(1): 1-8, CrossRef.

Böhm T, Berger H, Nejabat M, Riegler T, Kellner F, Kuttke M, et al. Food derived peroxidized fatty acids may trigger hepatic inflammation: a novel hypothesis to explain steatohepatitis. J Hepatol. 2013; 59(3): 563-70, CrossRef.

Jeyapal S, Kona SR, Mullapudi SV, Putcha UK, Gurumurthy P, Ibrahim A. Substitution of linoleic acid with α-linolenic acid or long chain n-3 polyunsaturated fatty acid prevents Western diet induced nonalcoholic steatohepatitis. Sci Rep. 2018; 8 (10953): 1-14, CrossRef.

Eslam M, Newsome PN, Sarin SK, Anstee QM, Targher G, Romero-Gomez M, et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J Hepatol. 2020; 73(1): 202-9, CrossRef.

Ye Q, Zou B, Yeo YH, Li J, Huang DQ, Wu Y, et al. Global prevalence, incidence, and outcomes of non-obese or lean non-alcoholic fatty liver disease: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2020; 5(8): 739-52, CrossRef.


Indexed by:




Cell and BioPharmaceutical Institute