Cancer Genetics and Epigenetics in Cancer Risk Assesment

Anna Meiliana, Nurrani Mustika Dewi, Andi Wijaya

Abstract


Compared to the normal tissues, cancer cells tend to have higher proliferation rate and often lost their ability to undergo apoptosis. In addition, cancer cells can separate themselves from their original tissue thus causing metastasis in other part of body. While undergoing program cell death, disordered cellular programming can happen. The main causes of this cellular programming anomaly are epigenetic and genetic alterations, which have been known as two separate mechanisms in carcinogenetic. A recent outcome of whole exome sequencing of thousands of human cancers has been the unexpected discovery of many inactivating mutations in genes that control the epigenome. These mutations have the potential to disturb the DNA methylation patterns, histone modifications, and nucleosome positioning, hence, the causing gene expression alternation. Genetic alteration of the epigenome therefore contributes to cancer just as epigenetic process can cause point mutations and disable DNA repair functions. Epigenetic mechanisms changes could cause genetic mutations, and genetic mutations in epigenetic regulators could cause epigenome changes. Knowing that epigenome play a major role in the hierarchy of gene control mechanisms suggests that mutations might have impact on multiple pathways related to cancer phenotype. This pinpoint the fact that recently, the way the genes are organized and controlled are suggested to be a relevant factor for human carcinogenesis.

Keywords: cancer genetic, cancer epigenetic, oncogens, tumor suppressor genes, driver mutation, passenger mutation


Full Text:

PDF

References


Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. 2013; 45(10): 1113–20, CrossRef.

Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007; 448(7153): 561–6, CrossRef.

Parada LF, Tabin CJ, Shih C, Weinberg RA. Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene. Nature. 1982; 297(5866): 474–8, CrossRef.

Payne GS, Bishop JM, Varmus HE. Multiple arrangements of viral DNA and an activated host oncogene in bursal lymphomas. Nature. 1982; 295: 209–14, CrossRef.

Baker SJ, Fearon ER, Nigro JM, Hamilton SR, Preisinger AC, Jessup JM, et al. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science. 1989; 244(4901): 217–21, CrossRef.

Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science. 2005; 310(5748): 644–8, CrossRef.

Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002; 417(6892): 949–54, CrossRef.

Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med. 200; 361(11): 1058–66, CrossRef.

The Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008; 455(7216): 1061–8, CrossRef.

The Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011; 474(7353): 609–15, CrossRef.

The Cancer Genome Atlas Research Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012; 490(7418): 61–70, CrossRef.

The Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012; 489(7417): 519–25, CrossRef.

The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012; 487(7407): 330–7, CrossRef.

Perou C, Sørlie T, Eisen M, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000; 406: 747–752, CrossRef.

The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013; 499(7456): 43–9, CrossRef.

Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW. Cancer Genome Landscapes. Science. 2013; 339(6127): 1546–58, CrossRef.

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144: 646–74, CrossRef.

Baylin SB, Jones PA. A decade of exploring the cancer epigenome — biological and translational implications. Nat Rev Cancer. 2011; 11(10): 726–34, CrossRef.

Sandoval J, Esteller M. Cancer epigenomics: beyond genomics. Curr Opin Genet Dev. 2012; 22(1): 50–5, CrossRef.

Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007; 128(4): 683–92, CrossRef.

Kelly TK, De Carvalho DD, Jones PA. Epigenetic modifications as therapeutic targets. Nat Biotechnol. 2010; 28(10): 1069–78, CrossRef.

De Carvalho DD, Sharma S, You JS, Su SF, Taberlay PC, Kelly TK, et al. DNA methylation screening identifies driver epigenetic events of cancer cell survival. Cancer Cell. 2012; 21(5): 655–67, CrossRef.

Kalari S, Pfeifer GP. Identification of driver and passenger DNA methylation in cancer by epigenomic analysis. In: Advances in Genetics. Amsterdam: Elsevier; 2010. p.277–308, CrossRef.

You JS, Jones PA. Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell. 2012; 22(1): 9–20, CrossRef.

Lynch HT, Shaw MW, Magnuson CW, Larsen AL, Krush AJ. Hereditary factors in cancer: study of two large midwestern kindreds. Arch Intern Med 1966; 117(2): 206–12, CrossRef.

Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science. 1996; 273(5281): 1516–7, CrossRef.

Foulkes WD. Inherited susceptibility to common cancers. N Engl J Med 2008; 359(20): 2143–53, CrossRef.

Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K, et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature. 2005; 434(7035): 864–70, CrossRef.

Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N, et al. Oncogene-induced senescence is part of the tumorigenesis bar- rier imposed by DNA damage checkpoints. Nature 2006; 444(7119): 633–7, CrossRef.

Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T, et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 2005; 4349(7035): 907–13, CrossRef.

Burrell RA, McClelland SE, Endesfelder D, Groth P, Weller MC, Shaikh N, et al. Replication stress links structural and numerical cancer chromosomal instability. Nature 2013; 494(7438): 492–6, CrossRef.

Kanu N, Cerone MA, Goh G, Zalmas LP, Bartkova J, Dietzen M, et al. DNA replication stress mediates APOBEC3 family mutagenesis in breast cancer. Genome Biol 2016; 17(1): 185. CrossRef.

Fragkos M, Ganier O, Coulombe P, Mechali M. DNA replication origin activation in space and time. Nat Rev Mol Cell Biol 2015; 16(6): 360–74, CrossRef.

Kotsantis P, Petermann E, Boulton SJ. Mechanisms of oncogene-induced replication stress: jigsaw falling into place. Cancer Discov. 2018; 8(5): 537–55, CrossRef.

Macheret M, Halazonetis TD. DNA replication stress as a hallmark of cancer. Annu Rev Pathol. 2015; 10(1): 425–48, CrossRef.

Gonzalez S, Klatt P, Delgado S, Conde E, Lopez-Rios F, Sanchez- Cespedes M, et al. Oncogenic activity of Cdc6 through repression of the INK4/ARF locus. Nature. 2006; 440(7084): 702–6, CrossRef.

Land H, Parada LF, Weinberg RA. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature. 1983; 304(5927): 596–602, CrossRef.

Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumula- tion of p53 and p16INK4a. Cell. 1997; 88(5): 593–602, CrossRef.

Meek DW. Tumour suppression by p53: a role for the DNA damage response? Nat Rev Cancer. 2009; 9(10): 714–23, CrossRef.

Brosens LA, Hackeng WM, Offerhaus GJ, Hruban RH, Wood LD. Pancreatic adenocar- cinoma pathology: changing “landscape.” J Gastrointest Oncol. 2015; 6(4): 358–74, CrossRef.

Ojesina AI, Lichtenstein L, Freeman SS, Pedamallu CS, Imaz-Rosshandler I, Pugh TJ, et al. Landscape of genomic alterations in cervical carcinomas. Nature. 2014; 506(7488): 371–5, CrossRef.

Vogelstein B, Kinzler KW. The path to cancer — three strikes and you’re out. N Engl J Med. 2015; 373(20): 1895–8, CrossRef.

Muller PA Vousden KH. P53 mutations in cancer. Nat Cell Biol. 2013; 15(1): 2–8, CrossRef.

Wu H, Zhang Y. Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev. 2011; 25(23): 2436–52, CrossRef.

Kouzarides T. Chromatin modifications and their function. Cell. 2007; 128(4): 693–705, CrossRef.

Tan M, Luo H, Lee S, Jin F, Yang JS, Montellier E, et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell. 2011; 146(6): 1016–28, CrossRef.

Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012; 150(1): 12–27, CrossRef.

Morin RD, Johnson NA, Severson TM, Mungall AJ, An J, Goya R, et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet. 2010; 42(2): 181–5, CrossRef.

Van Haaften G, Dalgliesh GL, Davies H, Chen L, Bignell G, Greenman C, et al. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat Genet. 2009; 41(5): 521–3, CrossRef.

Baylin SB, Herman JG. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet. 2000; 16: 168–74, CrossRef.

Jones PA, Laird PW. Cancer-epigenetics comes of age. Nat Genet. 1999; 21(2): 163–7, CrossRef.

Esteller M, Toyota M, Sanchez-Cespedes M, Capella G, Peinado MA, Watkins DN, et al. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is associated with G to A mutations in K-ras in colorectal tumorigenesis. Cancer Res. 2000; 60(9): 2368-71, article.

Herman JG, Civin CI, Issa JP, Collector MI, Sharkis SJ, Baylin SB. Distinct patterns of inactivation of p15INK4B and p16INK4A characterize the major types of hematological malignancies. Cancer Res. 1997; 57(5): 837-41, article.

Burbee DG, Forgacs E, Zochbauer-Muller S, Shivakumar L, Fong K, Gao B, et al. Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. J Natl Cancer Inst. 2001; 93(9): 691–9, CrossRef.

Dammann R, Li C, Yoon JH, Chin PL, Bates S, Pfeifer GP. Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nat Genet. 2000; 25(3): 315–9, CrossRef.

Jones PA, Balin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002; 3(6): 415–28, CrossRef.

Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell. 1992; 69(6): 915–26, CrossRef.

Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell.1999; 99(3): 247–57, CrossRef.

Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci. 2006; 31(2): 89–97, CrossRef.

Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, Ndiaye-Lobry D, Lobry C, et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell. 2011; 20(1): 11–24, CrossRef.

Quivoron C, Couronné L, Della Valle V, Lopez CK, Plo I, Wagner-Ballon O, et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell. 2011; 20(1): 25–38, CrossRef.

Patel JP, Gönen M, Figueroa ME, Fernandez H, Sun Z, Racevskis J, et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med. 2012; 366(12): 1079–89, CrossRef.

Johnstone RW, Licht JD. Histone deacetylase inhibitors in cancer therapy. Cancer Cell. 2003; 4(1): 13–8, CrossRef.

Bereshchenko OR, Gu W, Dalla-Favera R. Acetylation inactivates the transcriptional repressor BCL6. Nat Genet. 2002; 32(4): 606–13, CrossRef.

Federico M, Bagella L. Histone deacetylase inhibitors in the treatment of hematological malignancies and solid tumors. J Biomed Biotechnol. 2011; 2011: 475641, CrossRef.

Timp W, Feinberg AP. Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host. Nat Rev Cancer/ 2013; 13(7): 497–510, CrossRef.

Esteller M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet. 2007; 8(4): 286–98, CrossRef.

Krivtsov AV, Armstrong SA. MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer. 2007; 7(11): 823–33, CrossRef.

Hitchins MP, Rapkins RW, Kwok CT, Srivastava S, Wong JJL, Khachigian LM, et al. Dominantly inherited constitutional epigenetic silencing of mlh1 in a cancer-affected family is linked to a single nucleotide variant within the 5′UTR. Cancer Cell. 2011; 20(2): 200–13, CrossRef.

Kanai Y, Ushijima S, Nakanishi Y, Sakamoto M, Hirohashi S. Mutation of the DNA methyltransferase (DNMT) 1 gene in human colorectal cancers. Cancer Lett. 2003; 192(1): 75–82, CrossRef.

Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010; 363(25): 2424-33, CrossRef.

Yamashita Y, Yuan J, Suetake I, Suzuki H, Ishikawa Y, Choi YL, et al. Array-based genomic resequencing of human leukemia. Oncogene. 2010; 29(25): 3723–31, CrossRef.

Yan XJ, Xu J, Gu ZH, Pan CM, Lu G, Shen Y, et al. Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet. 2011; 43: 309–15, CrossRef.

Wijmenga C, Hansen RS, Gimelli G, Björck EJ, Davies EG, Valentine D, et al. Genetic variation in ICF syndrome: evidence for genetic heterogeneity. Hum Mutat. 2000; 16(6): 509–17, CrossRef.

Shen H, Wang L, Spitz MR, Hong WK, Mao L, Wei Q. A novel polymorphism in human cytosine DNA-methyltransferase-3B promoter is associated with an increased risk of lung cancer. Cancer Res. 2002; 62(17): 4992-5, article.

Brock MV, Hooker CM, Ota-Machida E, Han Y, Guo M, Ames S, et al. DNA methylation markers and early recurrence in stage i lung cancer. N Engl J Med. 2008; 358(11): 1118–28, CrossRef.

Tomasetti C, Marchionni L, Nowak MA, Parmigiani G, Vogelstein B. Only three driver gene mutations are required for the development of lung and colorectal cancers. Proc Natl Acad Sci USA. 2014; 112(1): 118–23, CrossRef.

Garraway LA, Lander ES. Lessons from the cancer genome. Cell. 2013; 153(1): 17–37, CrossRef.

Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature. 2009; 458(7239): 719–24, CrossRef.

Tomasetti C, Vogelstein B, Parmigiani G. Half or more of the somatic mutations in cancers of self-renewing tissues originate prior to tumor initiation. Proc Natl Acad Sci USA 2013; 110(6): 1999–2004, CrossRef.

Davoli T, Xu AW, Mengwasser KE, Sack LM, Yoon JC, Park PJ, et al. Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell. 2013; 155(4): 948–62, CrossRef.

Sawyers CL. Chronic myeloid leukemia. N Engl J Med. 1999; 340(17): 1330–40, CrossRef.

Shukron O, Vainstein V, Kündgen A, Germing U, Agur Z. Analyzing transformation of myelodysplastic syndrome to secondary acute myeloid leukemia using a large patient database. Am J Hematol. 2012; 87(9): 853–60, CrossRef.

Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC, et al. Oncogenic signaling pathways in The Cancer Genome Atlas. 2018; 173(2): 321-337.e10, CrossRef.

Moore PS, Chang Y. Why do viruses cause cancer? Highlights of the first century of human tumour virology. Nat Rev Cancer. 2010; 10(12): 878–89, CrossRef.

Krump NA, You J. Molecular mechanisms of viral oncogenesis in humans. Nat Rev Microbiol. 2018; 16(11): 684–98, CrossRef.

Ménézo Y, Dale B, Cohen M. DNA damage and repair in human oocytes and embryos: a review. Zygote. 2010; 18(4): 357–65, CrossRef.

Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009; 461(7267): 1071–8, CrossRef.

Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Mol Cell. 2010; 40(2): 179–204, CrossRef.

Lahtz C, Pfeiffer GP. Epigenetic changes of DNA repair genes in cancer. J Mol Cell Biol. 2011; 30(1): 51–8, CrossRef.

Pfeifer GP. Mutagenesis at methylated CpG sequences. Curr Top Microbiol Immunol. 2006; 301: 259–81, CrossRef.

Hendrich B, Bird A. Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cel Biol. 1998; 18(11): 6538–47, CrossRef.

Hendrich B, Hardeland U, Ng H-H, Jiricny J, Bird A. The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites. Nature. 1999; 401(6750): 301–4, CrossRef.

Peng B, Hurt EM, Hodge DR, Thomas SB, Farrar WL. DNA hypermethylation and partial gene silencing of human thymine-DNA glycosylase in multiple myeloma cell lines. Epigenetics. 2006; 1(3): 138–45, CrossRef.

Howard JH, Frolov A, Tzeng C-WD, Stewart A, Midzak A, Majmundar A, et al. Epigenetic downregulation of the DNA repair gene MED1/MBD4 in colorectal and ovarian cancer. Cancer Biol Ther. 2009; 8(1): 94–100, CrossRef.

Arai K, Morishita K, Shinmura K, Kohno T, Kim S-R, Nohmi T, et al. Cloning of a human homolog of the yeast OGG1 gene that is involved in the repair of oxidative DNA damage. Oncogene. 1997; 14(23): 2857–61, CrossRef.

Chevillard S, Radicella JP, Levalois C, Lebeau J, Poupon MF, Oudard S, et al. Mutations in OGG1, a gene involved in the repair of oxidative DNA damage, are found in human lung and kidney tumours. Oncogene. 1998; 16(23): 3083–6, CrossRef.

Shinmura K, Yokota J. The OGG1 gene encodes a repair enzyme for oxidatively damaged dna and is involved in human carcinogenesis. Antioxid Redox Signal. 2001; 3(4): 597–609, CrossRef.

Guan H, Ji M, Hou P, Liu Z, Wang C, Shan Z, et al. Hypermethylation of the DNA mismatch repair gene MLH1 and Its association with lymph node metastasis and T1799ABRAF mutation in patients with papillary thyroid cancer. Cancer. 2008; 113(2): 247–55, CrossRef.

Tano K, Shiota S, Collier J, Foote RS, Mitra S. Isolation and structural characterization of a cDNA clone encoding the human DNA repair protein for O6-alkylguanine. Proc Natl Acad Sci USA. 1990; 87(2): 686–90, CrossRef.

Natarajan AT, Vermeulen S, Darroudi F, Valentine MB, Brent TP, Mitra S, et al. Chromosomal localization of human O6-methylguanine-DNA methyltransferase (MGMT) gene by in situ hybridization. Mutagenesis. 1992; 7(1): 83–5, CrossRef.

Esteller M, Hamilton SR, Burger PC, Baylin SB, Herman JG. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res. 1999; 59(4): 793–7, article.

Mellai M, Caldera V, Annovazzi L, Chiò A, Lanotte M, Cassoni P, et al. MGMT promoter hypermethylation in a series of 104 glioblastomas. Cancer Genom Proteom. 2009; 6(4): 219–27, article.

Shamsara J, Sharif S, Afsharnezhad S, Lotfi M, Raziee HR, Ghaffarzadegan K, et al. Association between MGMT promoter hypermethylation and p53 mutation in glioblastoma. Cancer Invest. 2009; 27(8): 825–9, CrossRef.

Herfarth KK, Brent TP, Danam RP, Remack JS, Kodner IJ, Wells SA Jr, et al. A specific CpG methylation pattern of the MGMT promoter region associated with reduced MGMT expression in primary colorectal cancers. Mol Carcinog. 1999; 24(2): 90–8, CrossRef.

Ogino S, Meyerhardt JA, Kawasaki T, Clark JW, Ryan DP, Kulke MH, et al. CpG island methylation, response to combination chemotherapy, and patient survival in advanced microsatellite stable colorectal carcinoma. Virchows Archiv. 2007; 450(5): 529–37, CrossRef.

Wolf P, Hu YC, Doffek K, Sidransky D, Ahrendt SA. O(6)-Methylguanine-DNA methyltransferase promoter hypermethylation shifts the p53 mutational spectrum in non-small cell lung cancer. Cancer Res. 2001; 61(22): 8113–7, article.

Wu JY, Wang J, Lai JC, Cheng YW, Yeh KT, Wu TC, et al. Association of O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation with p53 mutation occurrence in non-small cell lung cancer with different histology, gender, and smoking status. Ann Surg Oncol. 2008; 15(11): 3272–7, CrossRef.

Oue N, Shigeishi H, Kuniyasu H, Yokozaki H, Kuraoka K, Ito R, et al. Promoter hypermethylation of MGMT is associated with protein loss in gastric carcinoma. Int J Cancer. 2001; 93(6): 805–9, CrossRef.

Goldenberg D, Harden S, Masayesva BG, Ha P, Benoit N, Westra WH, et al. Intraoperative molecular margin analysis in head and neck cancer. Arch Otolaryngol Head Neck Surg. 2004; 130(1): 39–44, CrossRef.

Maruya S, Issa JPJ, Weber RS, Rosenthal DI, Haviland JC, Lotan R, et al. Differential methylation status of tumor-associated genes in head and neck squamous carcinoma. Clin Cancer Res. 2004; 10(11): 3825–30, CrossRef.

Steinmann K, Sandner A, Schagdarsurengin U, Dammann RH. Frequent promoter hypermethylation of tumor-related genes in head and neck squamous cell carcinoma. Oncol Rep. 2009; 22(6): 1519-26, CrossRef.

Sugasawa K. A multistep damage recognition mechanism for global genomic nucleotide excision repair. Genes Dev. 2001; 15(5): 507–21, CrossRef.

Riedl T. The comings and goings of nucleotide excision repair factors on damaged DNA. EMBO J. 2003; 22(19): 5293–303, CrossRef.

Fousteri M, Mullenders LH. Transcription-coupled nucleotide excision repair in mammalian cells: molecular mechanisms and biological effects. Cell Res. 2008; 18(1): 73–84, CrossRef.

Hanawalt PC, Spivak G. Transcription-coupled DNA repair: two decades of progress and surprises. Nat Rev Mol Cell Biol. 2008; 9(12): 958–70, CrossRef.

Peng B, Hodge DR, Thomas SB, Cherry JM, Munroe DJ, Pompeia C, et al. Epigenetic silencing of the human nucleotide excision repair gene, hHR23B, in interleukin-6-responsive multiple myeloma KAS-6/1 cells. J Biol Chem.2005; 280(6): 4182–7, CrossRef.

Chen HY, Shao CJ, Chen FR, Kwan AL, Chen ZP. Role of ERCC1 promoter hypermethylation in drug resistance to cisplatin in human gliomas. Int J Cancer. 2009; 126(8): 1944–54, CrossRef.

Bronner CE, Baker SM, Morrison PT, Warren G, Smith LG, Lescoe MK, et al. Mutation in the DNA mismatch repair gene homologue hMLH 1 is associated with hereditary non-polyposis colon cancer. Nature. 1994; 368(6468): 258–61, CrossRef.

Gazzoli I, Loda M, Garber J, Syngal S, Kolodner RD. A hereditary nonpolyposis colorectal carcinoma case associated with hypermethylation of the MLH1 gene in normal tissue and loss of heterozygosity of the unmethylated allele in the resulting microsatellite instability-high tumor. Cancer Res. 2002; 62(14): 3925–8, article.

Suter CM, Martin DIK, Ward RL. Germline epimutation of MLH1 in individuals with multiple cancers. Nat Genet. 2004; 36(5): 497–501, CrossRef.

Hitchins MP, Wong JJ, Suthers G, Suter CM, Martin DI, Hawkins NJ, et al. Inheritance of a cancer-associated MLH1 germ-line epimutation. N Engl J Med. 2007; 356(7): 697–705, CrossRef.

Duncan JA, Reeves JR, Cooke TG. BRCA1 and BRCA2 proteins: roles in health and disease. Mol Pathol. 1998; 51(5): 237–47, CrossRef.

Yoshida K, Miki Y. Role of BRCA1 and BRCA2 as regulators of DNA repair, transcription, and cell cycle in response to DNA damage. Cancer Sci. 2004; 95(11): 866–71, CrossRef.

Dobrovic A, Simpfendorfer D. Methylation of the BRCA1 gene in sporadic breast cancer. Cancer Res. 1997; 57(16): 3347–50, article.

Gras E, Cortes J, Diez O, Alonso C, Matias-Guiu X, Baiget M, et al. Loss of heterozygosity on chromosome 13q12-q14, BRCA-2 mutations and lack of BRCA-2 promoter hypermethylation in sporadic epithelial ovarian tumors. Cancer. 2001; 92(4): 787–95, CrossRef.

Hilton JL, Geisler JP, Rathe JA, Hattermann-Zogg MA, DeYoung B, Buller RE. Inactivation of BRCA1 and BRCA2 in ovarian cancer. J Natl Cancer Inst. 2002; 94(18) :1396–406, CrossRef.

Bernal C, Vargas M, Ossandón F, Santibáñez E, Urrutia J, Luengo V, et al. DNA methylation profile in diffuse type gastric cancer: evidence for hypermethylation of the BRCA1 promoter region in early-onset gastric carcinogenesis. Biol Res. 2008;41(3): 303–15, CrossRef.

Lee MN, Tseng RC, Hsu HS, Chen JY, Tzao C, Ho WL, et al. Epigenetic inactivation of the chromosomal stability control genes BRCA1, BRCA2, and XRCC5 in non–small cell lung cancer. Clin Cancer Res. 2007; 13(3): 832–8, CrossRef.

Xing D, Scangas G, Nitta M, He L, Xu X, Ioffe YJM, et al. A role for BRCA1 in uterine leiomyosarcoma. Cancer Res. 2009; 69(21): 8231–5, CrossRef.

Yu J, Zhu T, Wang Z, Zhang H, Qian Z, Xu H, et al. A novel set of DNA methylation markers in urine sediments for sensitive/specific detection of bladder cancer. Clin Cancer Res. 2007; 13(24): 7296–304, CrossRef.

Taccioli G, Gottlieb T, Blunt T, Priestley A, Demengeot J, Mizuta R, et al. Ku80: product of the XRCC5 gene and its role in DNA repair and V(D)J recombination. Science. 1994; 265(5177): 1442–5, CrossRef.

Difilippantonio MJ, Zhu J, Chen HT, Meffre E, Nussenzweig MC, Max EE, et al. DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation. Nature. 2000; 404(6777): 510–4, CrossRef.

Koike M. Dimerization, translocation and localization of Ku70 and Ku80 proteins. J Radiat Res. 2002; 43(3): 223-36, CrossRef.

Carter T, Vancurová I, Sun I, Lou W, DeLeon S. A DNA-activated protein kinase from HeLa cell nuclei. Mol Cell Biol. 1990; 10(12): 6460–71, CrossRef.

Kim W, Vo QN, Shrivastav M, Lataxes TA, Brown KD. Aberrant methylation of the ATM promoter correlates with increased radiosensitivity in a human colorectal tumor cell line. Oncogene. 2002; 21(24): 3864–71, CrossRef.

Vo QN, Kim WJ, Cvitanovic L, Boudreau DA, Ginzinger DG, Brown KD. The ATM gene is a target for epigenetic silencing in locally advanced breast cancer. Oncogene. 2004; 23(58): 9432–7, CrossRef.

Matsuoka S. Linkage of ATM to Cell Cycle Regulation by the Chk2 Protein Kinase. Science. 1998; 282(5395): 1893–7, CrossRef.

Kim DS, Kim MJ, Lee JY, Lee SM, Choi JE, Lee SY, et al. Epigenetic inactivation of checkpoint kinase 2 gene in non-small cell lung cancer and its relationship with clinicopathological features. Lung Cancer. 2009; 65(2): 247–50, CrossRef.

Zhang P, Wang J, Gao W, Yuan BZ, Rogers J, Reed E. CHK2 kinase expression is down-regulated due to promoter methylation in non-small cell lung cancer. Mol Cancer. 2004; 3: 14, CrossRef.

Wang H, Wang S, Shen L, Chen Y, Zhang X, Zhou J, et al. Chk2 down-regulation by promoter hypermethylation in human bulk gliomas. Life Sci. 2010; 86(5-6): 185–91, CrossRef.

Martincorena I, Campbell PJ. Somatic mutation in cancer and normal cells. Science. 2015; 349(6255): 1483–9, CrossRef.

Potapova TA, Zhu J, Li R. Aneuploidy and chromosomal instability: a vicious cycle driving cellular evolution and cancer genome chaos. Cancer Metastasis Rev. 2013; 32(3-4): 377–89, CrossRef.

Macaluso M, Paggi MG, Giordano A. Genetic and epigenetic alterations as hallmarks of the intricate road to cancer. Oncogene. 2003; 22(42): 6472-6478, CrossRef.

Baxter E, Windloch K, Gannon F, Lee JS. Epigenetic regulation in cancer progression. Cell Biosci. 2014; 4(1): 45, CrossRef.

MDuff FKE, Turner SD. Jailbreak: Oncogene-induced senescence and its evasion. Cell Signal. 2011; 23(1): 6–13, CrossRef.

Sun W, Yang J. Functional mechanisms for human tumor suppressors. J Cancer. 2010; 1: 136–40, CrossRef.

Wang LH, Wu CF, Rajasekaran N, Shin YK. Loss of tumor suppressor gene function in human cancer: an overview. Cell Physiol Biochem. 2018; 51(6): 2647–93, CrossRef.

Sánchez-Rivera FJ, Papagiannakopoulos T, Romero R, Tammela T, Bauer MR, Bhutkar A, et al. Rapid modelling of cooperating genetic events in cancer through somatic genome editing. Nature. 2014; 516(7531): 428–31, CrossRef.

Walter DM, Venancio OS, Buza EL, Tobias JW, Deshpande C, Gudiel AA, et al. Systematic in vivo inactivation of chromatin-regulating enzymes identifies setd2 as a potent tumor suppressor in lung adenocarcinoma. Cancer Res. 2017; 77(7): 1719–29, CrossRef.

Kim J, Minna JD. Evaluating tumor-suppressor gene combinations. Nat Genet. 2018; 50(4): 480–2, CrossRef.

Rogers ZN, McFarland CD, Winters IP, Seoane JA, Brady JJ, Yoon S, et al. Mapping the in vivo fitness landscape of lung adenocarcinoma tumor suppression in mice. Nat Genet. 2018; 50(4): 483–486, CrossRef.

Peller S, Rotter V. TP53 in hematological cancer: low incidence of mutations with significant clinical relevance. Hum Mut 2003; 21(3): 277–284, CrossRef.

Brachman DG, Graves D, Vokes E, Beckett M, Haraf D, Montag A, et al. Occurrence of p53 gene deletions and human papilloma virus infection in human head and neck cancer. Cancer Res. 1992; 52(17): 4832–6, article.

Hock AK, Vousden KH. The role of ubiquitin modification in the regulation of p53. BBA-Mol Cell Res. 2014; 1843(1): 137–49, CrossRef.

Pei D, Zhang Y, Zheng J. Regulation of p53: a collaboration between Mdm2 and MdmX. Oncotarget. 2012; 3(3): 228–35, CrossRef.

Kon N, Kobayashi Y, Li M, Brooks CL, Ludwig T, Gu W. Inactivation of HAUSP in vivo modulates p53 function. Oncogene. 2010; 29(9): 1270–9, CrossRef.

Marine JC. Spotlight on the role of COP1 in tumorigenesis. Nat Rev Cancer. 2012; 12(7): 455–64, CrossRef.

Jung YS, Qian Y, Chen X. Pirh2 RING-finger E3 ubiquitin ligase: Its role in tumorigenesis and cancer therapy. FEBS Lett. 2012; 586(10): 1397–402, CrossRef.

Zhang X, Berger FG, Yang J, Lu X. USP4 inhibits p53 through deubiquitinating and stabilizing ARF-BP1. The EMBO J 2011; 30(11): 2177–89, CrossRef.

Hampel H, Frankel WL, Martin E, Arnold M, Khanduja K, Kuebler P, et al. Feasibility of screening for lynch syndrome among patients with colorectal cancer. J Clin Oncol. 2008; 26(35): 5783–8, CrossRef.

Blue Ribbon Panel. Cancer Moonshot Blue Ribbon Panel Report 2016. USA: Blue Ribbon Panel; 2016, article.

Aaltonen LA, Salovaara R, Kristo P, Canzian F, Hemminki A, Peltomäki P, et al. Incidence of hereditary nonpolyposis colorectal cancer and the feasibility of molecular screening for the disease. N Engl J Med. 1998; 338(21): 1481–7, CrossRef.

Barnetson RA, Tenesa A, Farrington SM, Nicholl ID, Cetnarskyj R, Porteous ME, et al. Identification and survival of carriers of mutations in dna mismatch-repair genes in colon cancer. N Engl J Med. 2006; 354(26): 2751–63, CrossRef.

Hampel H, Frankel WL, Martin E, Arnold M, Khanduja K, Kuebler P, et al. Screening for the lynch syndrome (hereditary nonpolyposis colorectal cancer). N Engl J Med. 2005; 352(18): 1851–60, CrossRef.

Pinol V, Castells A, Andreu M, Castellví-Bel S, Alenda C, Llor X, et al. Accuracy of revised Bethesda guidelines, microsatellite instability, and immunohistochemistry for the identification of patients with hereditary nonpolyposis colorectal cancer. JAMA. 2005; 293(16): 1986–94, CrossRef.

Salovaara R, Loukola A, Kristo P, Kääriäinen H, Ahtola H, Eskelinen M, et al. Population-based molecular detection of hereditary nonpolyposis colorectal cancer. J Clin Oncol. 2000; 18(11): 2193–200, CrossRef.

Bonadona V, Bonaïti B, Olschwang S, Grandjouan S, Huiart L, Longy M, et al. Cancer risks associated with germline mutations in MLH1, MSH2, and MSH6 genes in Lynch syndrome. JAMA. 2011; 305(22): 2304–10, CrossRef.

Dunlap MG, Farrington SM, Carothers AD, Wyllie AH, Sharp L, Burn J, et al. Cancer risk associated with germline DNA mismatch repair gene mutations. Hum Mol Genet. 1997; 6(1): 105-10, CrossRef.

Hendriks YMC, Wagner A, Morreau H, Menko F, Stormorken A, Quehenberger F, et al. Cancer risk in hereditary nonpolyposis colorectal cancer due to MSH6 mutations: impact on counseling and surveillance. Gastroenterology. 2004; 127(1): 17–25, CrossRef.

Senter L, Clendenning M, Sotamaa K, Hampel H, Green J, Potter JD, et al. The clinical phenotype of lynch syndrome due to germ-line PMS2 mutations. Gastroenterology. 2008; 135(2): 419–428.e1, CrossRef.

Vasen HFA. Clinical description of the lynch syndrome [Hereditary Nonpolyposis Colorectal Cancer (HNPCC)]. Fam Cancer. 2005; 4(3): 219–25, CrossRef.

Hampel H, Stephens J, Pukkala E, Sankila R, Aaltonen L, Mecklin J, et al. Cancer risk in hereditary nonpolyposis colorectal cancer syndrome: later age of onset. Gastroenterology. 2005; 129(2): 415–21, CrossRef.

National Cancer Institute [Internet]. Bethesda (MD): National Cancer Institute; 2012. Previous Version: SEER Cancer Statistics Review, 1975-2009 (Vintage 2009 Populations) [update 2012 Aug 20; cited 2019 Nov 1]. Available at: https://seer.cancer.gov/.

Lynch HT, Smyrk TC, Watson P, Lanspa SJ, Lynch JF, Lynch PM, et al. Genetics, natural history, tumor spectrum, and pathology of hereditary nonpolyposis colorectal cancer: An updated review. Gastroenterology. 1993; 104(5): 1535–49, CrossRef.

De Vos tot Nederveen Cappel WH, Nagengast FM, Griffioen G, Menko FH, Taal BG, Kleibeuker JH, et al. Surveillance for hereditary nonpolyposis colorectal cancer. Dis Colon Rectum. 2002; 45(12): 1588–94, CrossRef.

Parry S, Win AK, Parry B, Macrae FA, Gurrin LC, Church JM, et al. Metachronous colorectal cancer risk for mismatch repair gene mutation carriers: the advantage of more extensive colon surgery. Gut. 2011; 60(7): 950–7, CrossRef.

Win AK, Parry S, Parry B, Kalady MF, Macrae FA, Ahnen DJ, et al. Risk of metachronous colon cancer following surgery for rectal cancer in mismatch repair gene mutation carriers. Ann Surg Oncol. 2013; 20(6): 1829–36, CrossRef.

Win AK, Jenkins MA, Dowty JG, Antoniou AC, Lee A, Giles GG, et al. Prevalence and penetrance of major genes and polygenes for colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2017; 26(3): 404–12, CrossRef.

Da Silva Fc, Wernhoff P, Dominguez-Barrera C, Dominguez-Valentin M. Update on hereditary colorectal cancer. Anticancer Res. 2016; 36(9): 4399–406, CrossRef.

Espenschied CR, LaDuca H, Li S, McFarland R, Gau CL, Hampel H. Multigene panel testing provides a new per- spective on Lynch syndrome. J Clin Oncol. 2017; 35(22): 2568–75, CrossRef.

Yamano T, Hamanaka M, Babaya A, Kimura K, Kobayashi M, Fukumoto M, Tsukamoto K, et al. Management strategies in Lynch syndrome and familial adenomatous polyposis: a national healthcare survey in Japan. Cancer Sci. 2017; 108(2): 243–9, CrossRef.

Carethers JM, Stoffel EM. Lynch syndrome and Lynch syndrome mimics: the growing complex landscape of hereditary colon cancer. World J Gastroenterol. 2015; 21(31): 9253–61, CrossRef.

Wimmer K, Etzler J. Constitutional mismatch repair-defi- ciency syndrome: have we so far seen only the tip of the iceberg? Hum Genet. 2008; 124(2): 105–22, CrossRef.

Mensenkamp AR, Vogelaar IP, van Zelst–Stams WAG, Goossens M, Ouchene H, Hendriks–Cornelissen SJB, et al. Somatic mutations in MLH1 and MSH2 are a frequent cause of mismatch-repair deficiency in lynch syndrome-like tumors. Gastroenterology. 2014; 146(3): 643–6.e8, CrossRef.

Bettstetter M, Dechant S, Ruemmele P, Grabowski M, Keller G, Holinski-Feder E, et al. Distinction of hereditary nonpolyposis colorectal cancer and sporadic microsatellite-unstable colorectal cancer through quantification of MLH1 methylation by real-time PCR. Clin Cancer Res. 2007; 13(11): 3221–8, CrossRef.

National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines): Genetic/Familial High-Risk Assessment: Colorectal. USA: NCCN; 2017, article.

Kempers MJ, Kuiper RP, Ockeloen CW, Chappuis PO, Hutter P, Rahner N, et al. Risk of colorectal and endometrial cancers in EPCAM deletion-positive Lynch syndrome: a cohort study. Lancet Oncol. 2011; 12(1): 49–55, CrossRef.

Lynch HT, Riegert-Johnson DL, Snyder C, Lynch JF, Hagenkord J, Boland RC, et al. Lynch syndrome-associated extracolonic tumors are rare in two extended families with the same EPCAM deletion. Am J Gastroenterol. 2011; 106(10): 1829–36, CrossRef.

Giardiello FM, Allen JI, Axilbund JE, Boland CR, Burke CA, Burt RW, et al. US Multi-Society Task Force on Colorectal Cancer. Guidelines on genetic evaluation and management of Lynch syndrome: a consensus statement by the US Multi-Society Task Force on colorectal cancer. Gastroenterology. 2014; 147(2): 502–26, CrossRef.

Aarnio M, Sankila R, Pukkala E, Salovaara R, Aaltonen LA, de la Chapelle A, et al. Cancer risk in mutation carriers of DNA-mismatch-repair genes. Int J Cancer. 1999; 81(2): 214-8, CrossRef.

Kastrinos F, Stoffel EM, Balmaña J, Steyerberg EW, Mercado R, Syngal S. Phenotype comparison of mlh1 and msh2 mutation carriers in a cohort of 1,914 individuals undergoing clinical genetic testing in the United States. Cancer Epidemiol Biomarkers Prev. 2008; 17(8): 2044–51, CrossRef.

Win AK, Young JP, Lindor NM. Colorectal and other cancer risks for carriers and noncarriers from families with a DNA mismatch repair gene mutation: a prospective cohort study. J Clin Oncol. 2012; 30(9): 958–64, CrossRef.

Axilbund JE, Klein AP, Bacon JA. Risk of pancreatic cancer in he- reditary nonpolyposis colorectal cancer. Presented at: the 3rd Bien- nial Meeting of the International Society for Gastrointestinal Hereditary Tumours (InSiGHT); June 24-27, 2009; Dusseldorf, Germany.

Grindedal EM, Moller P, Eeles R, Stormorken AT, Bowitz-Lothe IM, Landro SM, et al. Germ-line mutations in mismatch repair genes associated with prostate cancer. Cancer Epidemiol Biomarkers Prev. 2009; 18(9): 2460–7, CrossRef.

Kastrinos F, Mukherjee B, Tayob N, Wang F, Sparr J, Raymond VM, et al. Risk of pancreatic cancer in families with Lynch syndrome. JAMA. 2009; 302(16): 1790–5, CrossRef.

Müller A, Edmonston TB, Corao DA, Rose DG, Palazzo JP, Becker H, et al. Exclusion of breast cancer as an integral tumor of hereditary nonpolyposis colorectal cancer. Cancer Res. 2002; 62(4): 1014–9, article.

Vasen HF, Morreau H, Nortier JW. Is breast cancer part of the tumor spectrum of hereditary nonpolyposis colorectal cancer? Am J Hum Genet 2001; 68(6): 1533–5, CrossRef.

Walsh MD, Buchanan DD, Cummings MC, Pearson SA, Arnold ST, Clendenning M, et al. Lynch syndrome-associated breast cancers: clinicopathologic characteristics of a case series from the colon cancer family registry. Clin Cancer Res. 2010; 16(7): 2214–24, CrossRef.

Buerki N, Gautier L, Kovac M, Marra G, Buser M, Mueller H, et al. Evidence for breast cancer as an integral part of lynch syndrome. Genes Chromosom Cancer. 2011; 51(1): 83–91, CrossRef.

Raymond VM, Mukherjee B, Wang F, Huang SC, Stoffel EM, Kastrinos F, et al. Elevated risk of prostate cancer among men with Lynch syndrome. J Clin Oncol. 2013; 31(14): 1713–8, CrossRef.

Kelsen DP, Daly JM, Kern SE, editors. Principles and practice of gastrointestinal oncology. 2nd ed. Philadelphia: Lippincott William and Wilkins; 2008, article.

Teruya-Feldstein J, Greene J, Cohen L, Popplewell L, Ellis NA, Offit K. Analysis of mismatch repair defects in the familial occurrence of lymphoma and colorectal cancer. Leuk Lymphoma. 2002; 43(8): 1619–26, CrossRef.

Nilbert M, Therkildsen C, Nissen A, Åkerman M, Bernstein I. Sarcomas associated with hereditary nonpolyposis colorectal cancer: broad anatomical and morphological spectrum. Fam Cancer. 2009; 8(3): 209–13, CrossRef.

Lynch HT, Lanspa S, Shaw T, Casey MJ, Rendell M, Stacey M, et al. Phenotypic and genotypic heterogeneity of Lynch syndrome: a complex diagnostic challenge. Fam Cancer. 2018; 17(3): 403–414, CrossRef.

Giardiello FM, Allen JI, Axilbund JE, Boland RC, Burke CA, Burt RW, et al. Guidelines on genetic evaluation and management of lynch syndrome: a consensus statement by the US Multi-Society Task Force on Colorectal Cancer. Am J Gastroenterol. 2014; 109(8): 1159–79, CrossRef.

Fishel R, Lescoe MK, Rao MRS, Copeland NG, Jenkins NA, Garber J, et al. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell. 1993; 75(5): 1027–38, CrossRef.

Kovacs ME, Papp J, Szentirmay Z, Otto S, Olah E. Deletions removing the last exon ofTACSTD1constitute a distinct class of mutations predisposing to Lynch syndrome. Hum Mutat. 2009; 30(2): 197–203, CrossRef.

Weissman SM, Belleross C, Bittner CC, Freivogel ME, Haidle JL, Kaurah P, et al. Genetic counseling considerations in the evaluation of families for lynch syndrome—a review. J Genet Counsel. 2011; 20(1): 5-19, CrossRef.

Lee J, Ledermann JA, Kohn EC. PARP Inhibitors for BRCA1/2 mutation-associated and BRCA-like malignancies. Ann Oncol. 2014; 25(1): 32–40, CrossRef.

Link JT, Overman MJ. Immunotherapy progress in mismatch repair-deficient colorectal cancer and future therapeutic challenges. Cancer J. 2016; 22(3): 190–195, CrossRef.




DOI: https://doi.org/10.21705/mcbs.v5i2.198

Indexed by:

                     

                    

                    


Cell and BioPharmaceutical Institute