Innate Immune Response to House Dust Mite Allergens in Allergic Asthma

Winna Soleha, Febriana Catur Iswanti

Abstract


Asthma is a major health problem and one of the leading causes of death in the world. The prevalence of asthma in Indonesia is high, with a recurrence >50%. Allergic sensitization in asthma is mainly caused by house dust mite (HDM) allergens, both from the mite’s body and its contaminants (e.g., lipopolysaccharides). HDM allergens stimulate several pathways in the innate immune response based on the HDM allergen groups that sensitize them. The innate immune response to HDM allergen exposure occurs when pattern recognition receptors (PRRs) recognizes the allergen, thereby stimulating respiratory epithelial cells to release cytokines, namely, thymic stromal lymphopoietin (TSLP), interleukin-25 (IL -25), and IL-33. The release of IL-25 and IL-33 activates group 2 innate lymphoid cells (ILC2) to release Th2-type cytokines (i.e., IL-5 and IL-13), resulting in allergic airway inflammation via IgE secretion by B cells, recruitment of eosinophils, and respiratory tract remodeling. Dendritic cells induce an adaptive immune response through Th2 activation in the sensitization and effector phases. Other mediators that contributed to the innate immune response include C-C motif chemokine ligand 20 (CCL-20) and granulocyte-macrophage colony-stimulating factor (GM-CSF). A deeper understanding of the components and mechanisms involved in innate immunity against HDM allergens creates the potential to develop alternative therapeutic targets for allergic asthma treatment.

Keywords: house dust mite allergens, innate immunity, allergic asthma, respiratory epithelium, inflammatory cytokines


Full Text:

PDF

References


Oemiati R, Sihombing M, Qomariah. Faktor-faktor yang berhubungan dengan penyakit asma di Indonesia. Media Peneliti dan Pengembangan Kesehatan. 2012; 20(1): 41–50, article.

Voskamp AL, Kormelink TG, Hiemstra PS, Taube C, Jong EC De, Smits HH. Modulating local airway immune responses to treat allergic asthma : lessons from experimental models and human studies. Semin Immunopathol. 2020; 42(1): 95-110, CrossRef.

Andriani FP, Sabri YS, Anggrainy F. Gambaran karakteristik tingkat kontrol penderita asma berdasarkan indeks massa tubuh (IMT) di Poli Paru RSUP. Dr. M. Djamil Padang pada tahun 2016. Jurnal Kesehatan Andalas. 2019; 8(1): 89–95, article.

Kemenkes RI. Hasil Utama Riset Kesehata Dasar (RISKESDAS). Jakarta: Kemenkes RI; 2018, article.

Kowal K, Pampuch A, Siergiejko G, Siergiejko Z. Sensitization to major dermatophagoides pteronyssinus allergens in house dust mite allergic patients from North Eastern Poland developing rhinitis or asthma. Adv Med Sci. 2020; 65(2): 304–9, CrossRef.

Thomas WR, Hales BJ, Smith W. House dust mite allergens in asthma and allergy. Trends Mol Med. 2010; 16(7): 321–8, CrossRef.

Erban T, Klimov P, Talacko P, Harant K, Hubert J. Proteogenomics of the house dust mite, Dermatophagoides farinae: Allergen repertoire, accurate allergen identification, isoforms, and sex-biased proteome differences. J Proteomics. 2020; 210: 103535, CrossRef.

Kwarta CP, Wibowo H, Khaedir Y, Rengganis I, Nuraeni HS. Interleukin-13, interleukin-10, interferon-g and IDO production in response to home dust mite in allergic asthma. Indones Biomed J. 2019; 11(2): 194–9, CrossRef.

Calderon MA, Linneberg A, Hernandez D, Rojas F De, Virchow JC, Demoly P, et al. Respiratory allergy caused by house dust mites : What do we really know? J Allergy Clin Immunol. 2015; 136(1): 38–48, CrossRef.

Gregory LG, Lloyd CM. Orchestrating house dust mite-associated allergy in the lung. Trends Immunol. 2011; 32(9): 402–11, CrossRef.

Simpson JL, Brooks C, Douwes J. Innate immunity in asthma. Paediatr Respir Rev. 2008; 9(4): 263–70, CrossRef.

Abbas AK, Lichtman AH, Pillai S. Cellular and Molecular Immunology. 9th ed. Philadelphia: Elsevier; 2018, article.

Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006; 124(4): 783–801, CrossRef.

Gasteiger G, D’osualdo A, Schubert DA, Weber A, Bruscia EM, Hartl D. Cellular innate immunity: an old game with new players. J Innate Immun. 2017; 9(2): 111–25, CrossRef.

Finn PW, Bigby TD. Innate immunity and asthma. Proc Am Thorac Soc. 2009; 6(3): 260–5, CrossRef.

Murphy K. Janeway’S Immunobiology. 7th ed. New York: Garland Science; 2008, article.

Virella G. Overview of hypersensitivity. In: Virella G, editor. Medical Immunology. 7th ed. Boca Raton: Taylor & Francis Group; 2020. p.277-86, CrossRef.

Kurnia FN, Hartana A, Rengganis I. Faktor pencetus kejadian alergi pernapasan pada pasien dewasa di RSUPN Dr. Cipto Mangunkusumo. Jurnal Sumberdaya HAYATI. 2019; 5(2): 72–80, CrossRef.

Finn AF, Virella G. IgE-mediated (immediate) hypersensitivity. In: Virella G, editor. Medical Immunology. 7th ed. Boca Raton: Taylor & Francis Group; 2020. p.287-301, CrossRef.

Dharmayanti I, Hapsari D, Azhar K. Asma pada anak di Indonesia : Penyebab dan pencetus.Jurnal Kesehatan Masyarakat Nasional. 2013; 9(29): 320–6, article.

Lambrecht BN, Hammad H. The airway epithelium in asthma. Nat Med. 2012; 18(5): 684–92, CrossRef.

Barnig C, Levy BD. Innate immunity is a key factor for the resolution of inflammation in asthma. Eur Respir Rev. 2015; 24(135): 141–53, CrossRef.

Borish L. The immunology of asthma: Asthma phenotypes and their implications for personalized treatment. Ann Allergy Asthma Immunol. 2016; 117(2): 108–14, CrossRef.

Stadhouders R, Li BWS, de Bruijn MJW, Gomez A, Rao TN, Fehling HJ, et al. Epigenome analysis links gene regulatory elements in group 2 innate lymphocytes to asthma susceptibility. J Allergy Clin Immunol. 2018; 142(6): 1793–807, CrossRef.

Wada T, Hirahara K, Aoki A, Morimoto Y, Kiuchi M, Kumagai J, et al. An optimized protocol for the analysis of house dust mite (Dermatophagoides farinae) -induced neutrophil-dominant airway inflammation. J Immunol Methods. 2019; 465: 53–60, CrossRef.

Sánchez-borges M, Fernandez-caldas E, Thomas WR, Chapman MD, Lee BW, Caraballo L, et al. International consensus (ICON) on: Clinical consequences of mite hypersensitivity, a global problem. World Allergy Organ J. 2017; 10(16): 1–26, CrossRef.

Cao H, Liu Z. Clinical significance of dust mite allergens. Mol Biol Rep. 2020; 47(8): 6239–46, CrossRef.

Adelman DC, Casale TB, Corren J. Manual of Allergy and Immunology. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2012, article.

Jacquet A. Characterization of innate immune responses to house dust mite allergens: pitfalls and imitations. Front Allergy. 2021; 2: 1–8, CrossRef.

Thomas WR. Hierarchy and molecular properties of house dust mite allergens. Allergol Int. 2015; 64(4): 304–11, CrossRef.

Huang FL, Liao EC, Yu SJ. House dust mite allergy: Its innate immune response and immunotherapy. Immunobiology. 2018; 223(3): 300–2, CrossRef.

Jacquet A. Innate immune responses in house dust mite allergy. ISRN Allergy. 2013; 2013: 735031, CrossRef.

Pacciani V, Gregori S, Chini L, Corrente S, Chianca M. Induction of anergic allergen-specific suppressor T cells using tolerogenic dendritic cells derived from children with allergies to house dust mites. J Allergy Clin Immunol. 2010; 125(3): 727–36, CrossRef.

Jacquet A. The role of innate immunity activation in house dust mite allergy. Trends Mol Med. 2011; 17(10): 604–11, CrossRef.

Nadeem A, Al-Harbi NO, Ahmad SF, Ibrahim KE, Alotaibi MR, Siddiqui N, et al. Protease activated receptor-2 mediated upregulation of IL-17 receptor signaling on airway epithelial cells is responsible for neutrophilic infiltration during acute exposure of house dust mite allergens in mice. Chem Biol Interact. 2019; 304: 52–60, CrossRef.

Verma M, Liu S, Michalec L, Sripada A, Gorska MM, Alam R. Experimental asthma persists in IL-33 receptor knockout mice because of the emergence of thymic stromal lymphopoietin–driven IL-9 + and IL-13 + type 2 innate lymphoid cell subpopulations. J Allergy Clin Immunol. 2018; 142(3): 793–803, CrossRef.

Kabata H, Moro K, Koyasu S, Asano K. Group 2 innate lymphoid cells and asthma. Allergol Int. 2015; 64(3): 227–34, CrossRef.

Khalaf K, Paoletti G, Puggioni F, Racca F, De Luca F, Giorgis V, et al. Asthma from immune pathogenesis to precision medicine. Semin Immunol. 2019; 46: 101294, CrossRef.

Scadding GK, Scadding GW. Innate and adaptive immunity: ILC2 and Th2 cells in upper and lower airway allergic diseases. J Allergy Clin Immunol Pract. 2021; 9(5): 1851–7, CrossRef.

Yu S, Kim HY, Chang YJ, Dekruyff RH, Umetsu DT. Innate lymphoid cells and asthma. J Allergy Clin Immunol. 2014; 133(4): 943–50, CrossRef.

Tan R, Liew MF, Lim HF, Leung BP, Wong WSF. Promises and challenges of biologics for severe asthma. Biochem Pharmacol. 2020; 179: 114012, CrossRef.

Iijima H, Kaneko Y, Yamada H, Yatagai Y, Masuko H, Sakamoto T, et al. A distinct sensitization pattern associated with asthma and the thymic stromal lymphopoietin (TSLP) genotype. Allergol Int. 2013; 62(1): 123–30, CrossRef.

Grayson MH, Feldman S, Prince BT, Patel PJ, Matsui EC, Apter AJ. Advances in asthma in 2017: Mechanisms, biologics, and genetics. J Allergy Clin Immunol. 2018; 142(5): 1423–36, CrossRef.

Oliver ET, Chichester K, Devine K, Sterba PM, Wegner C, Vonakis BM, et al. Effects of an oral CRTh2 antagonist (AZD1981) on eosinophil activity and symptoms in chronic spontaneous urticaria. Int Arch Allergy Immunol. 2019; 179(4): 21–30, CrossRef.

Singh D, Ravi A, Southworth T. CRTH2 antagonists in asthma: Current perspectives. Clin Pharmacol Adv Appl. 2017; 9: 165–73, CrossRef.




DOI: https://doi.org/10.21705/mcbs.v5i3.217

Indexed by:

                     

                    

            


Cell and BioPharmaceutical Institute