Safety and Efficacy of Mesenchymal Stem Cells in Burn Therapy: Systematic Review
Abstract
The experimental research on the use of mesenchymal stem cells (MSCs) for burn therapy has been published several times. However, current clinical procedure remains a challenging discussion. This systematic review assesses the safety and efficacy of administering mesenchymal stem cells (MSCs) to burns and determines the most effective source of MSCs for burn therapy. We reviewed several studies through PubMed, Google Scholar, Science Direct, and DOAJ online databases. PRISMA-P 2020 method was used based on inclusion and exclusion criteria that were re-selected through Joanna Briggs Institute (JBI) Critical Appraisal Tools. Results from 13 articles showed that MSCs are safe for burn therapy with minimal side effects/complications and have the potential to repair tissue and accelerate burn healing through several mechanisms. The treatment of MSCs in burns is influenced by donor characteristics and related to the severity and area of the burn. It can be concluded that the administration of MSCs is safe and effective in burn therapy.
Keywords: burns, mesenchymal stem cells, therapeutic safety, therapeutic efficacy, wound healing
Full Text:
PDFReferences
Stokes MA, Johnson WD. Burns in the third world: An unmet need. Ann Burns Fire Disasters. 2017; 30(4): 243–6, article.
Kementerian Kesehatan Republik Indonesia. Keputusan Menteri Kesehatan Republik Indonesia Nomor HK.01.07/MENKES/555/2019 Tentang Pedoman Nasional Pelayanan Kedokteran Tata Laksana Luka Bakar. Jakarta: Kementerian Kesehatan Republik Indonesia; 2019, article.
Kementerian Kesehatan Republik Indonesia. Laporan Nasional Riset Kesehatan Dasar 2018. Jakarta: Kementerian Kesehatan Republik Indonesia; 2018, article.
Rowan MP, Cancio LC, Elster EA, Burmeister DM, Rose LF, Natesan S, et al. Burn wound healing and treatment: Review and advancements. Crit Care. 2015; 19: 243, CrossRef.
Yolanda O, Yuliana SD, Nugraha Y. Pengaruh madu, Aloe vera, dan MEBO terhadap kepadatan kolagen pada luka bakar derajat II kulit tikus. Al-Kauniyah J Biol. 2021; 14(1): 152–61, CrossRef.
Yefta M. Luka Bakar: Masalah dan Tatalaksana. Jakarta: UPK Luka Bakar RS Cipto Mangunkusumo; 2006.
Li Y, Xia WD, Van Der Merwe L, Dai WT, Lin C. Efficacy of stem cell therapy for burn wounds: A systematic review and meta-analysis of preclinical studies. Stem Cell Res Ther. 2020; 11(1): 322, CrossRef.
Kolios G, Moodley Y. Introduction to stem cells and regenerative medicine. Respiration. 2013; 85(1): 3–10, CrossRef.
Ullah I, Subbarao RB, Rho GJ. Human mesenchymal stem cells - Current trends and future prospective. Biosci Rep. 2015; 35(2): e00191, CrossRef.
Mishra VK, Shih HH, Parveen F, Lenzen D, Ito E, Chan TF, et al. Identifying the therapeutic significance of mesenchymal stem cells. Cells. 2020; 9(5): 1145, CrossRef.
Darmayanti S, Triana R, Chouw A, Dewi NM. Is stem cell a curer or an obstruction? Mol Cell Biomed Sci. 2017; 1(1): 17-21, CrossRef.
Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal stem cells for regenerative medicine. Cells. 2019; 8(8): 886, CrossRef.
Shpichka A, Butnaru D, Bezrukov EA, Sukhanov RB, Atala A, Burdukovskii V, et al. Skin tissue regeneration for burn injury. Stem Cell Res Ther. 2019; 10(1): 94, CrossRef.
The Joanna Briggs Institute [Internet]. Adelaide: Faculty of Health and Medical Sciences The University of Adelaide; ©2020. Critical Appraisal Tools [cited 2021 Apr 21]. Available from: https://jbi.global/.
Öksüz S, Ülkür E, Öncül O, Köse GT, Küçükodac Z, Urhan M. The effect of subcutaneous mesenchymal stem cell injection on statis zone and apoptosis in an experimental burn model. Plast Reconstr Surg. 2013; 131(3): 463–71, CrossRef.
Abbas OL, Özatik O, Gönen ZB, Öǧüt S, Entok E, Özatik FY, et al. Prevention of burn wound progression by mesenchymal stem cell transplantation: Deeper insights into underlying mechanisms. Ann Plast Surg. 2018; 81(6): 715–24, CrossRef.
Abbas OL, Özatik O, Gönen ZB, Öğüt S, Özatik FY, Salkın H, et al. Comparative analysis of mesenchymal stem cells from bone marrow, adipose tissue, and dental pulp as sources of cell therapy for zone of stasis burns. J Investig Surg. 2019; 32(6): 477–90, CrossRef.
Aryan A, Bayat M, Bonakdar S, Taheri S, Haghparast N, Bagheri M, et al. Human bone marrow mesenchymal stem cell conditioned medium promotes wound healing in deep second-degree burns in male rats. Cells Tissues Organs. 2018; 206(6): 317–29, CrossRef.
Zhang J, La X, Fan L, Li P, Yu Y, Huang Y, et al. Immunosuppressive effects of mesenchymal stem cell transplantation in rat burn models. Int J Clin Exp Pathol. 2015; 8(5): 5129–36, article.
Liu L, Yu Y, Hou Y, Chai J, Duan H, Chu W, et al. Human umbilical cord mesenchymal stem cells transplantation promotes cutaneous wound healing of severe burned rats. PLoS One. 2014; 9(2): e88348, CrossRef.
Xue L, Xu Y Bin, Xie JL, Tang JM, Shu B, Chen L, et al. Effects of human bone marrow mesenchymal stem cells on burn injury healing in a mouse model. Int J Clin Exp Pathol. 2013; 6(7): 1327–36, article.
Bliley JM, Argenta A, Satish L, McLaughlin MM, Dees A, Tompkins-Rhoades C, et al. Administration of adipose-derived stem cells enhances vascularity, induces collagen deposition, and dermal adipogenesis in burn wounds. Burns. 2016; 42(6): 1212–22, CrossRef.
Feng CJ, Lin CH, Tsai CH, Yang IC, Ma H. Adipose-derived stem cells-induced burn wound healing and regeneration of skin appendages in a novel skin island rat model. J Chin Med Assoc. 2019; 82(8): 635–42, CrossRef.
Chang YW, Wu YC, Huang SH, Wang HMD, Kuo YR, Lee SS. Autologous and not allogeneic adipose-derived stem cells improve acute burn wound healing. PLoS One. 2018; 13(5): e0197744, CrossRef.
Abo-Elkheir W, Hamza F, Elmofty AM, Emam A, Abdl-Moktader M, Elsherefy S, et al. Role of cord blood and bone marrow mesenchymal stem cells in recent deep burn: A case-control prospective study. Am J Stem Cells. 2017; 6(3): 23–35, article.
Wittig O, Diaz-Solano D, Chacín T, Rodriguez Y, Ramos G, Acurero G, et al. Healing of deep dermal burns by allogeneic mesenchymal stromal cell transplantation. Int J Dermatol. 2020; 59(8): 941–50, CrossRef.
Jeschke MG, Rehou S, McCann MR, Shahrokhi S. Allogeneic mesenchymal stem cells for treatment of severe burn injury. Stem Cell Res Ther. 2019; 10(1): 337, CrossRef.
Wong VW, Sorkin M, Glotzbach JP, Longaker MT, Gurtner GC. Surgical approaches to create murine models of human wound healing. J Biomed Biotechnol. 2011; 2011: 969618, CrossRef.
Andersen ML, Winter LMF. Animal models in biological and biomedical research – Experimental and ethical concerns. An Acad Bras Cienc. 2019; 91(suppl 1): e20170238, CrossRef.
World Health Organization [Internet]. Geneva: World Health Organization; ©2021. Burns [update 2018 Mar 6; cited 2021 Mar 26]. Available from: https://www.who.int/.
Caliari-Oliveira C, Yaochite JN, Ramalho LN, Palma PV, Carlos D, Cunha F de Q, et al. Xenogeneic mesenchymal stromal cells improve wound healing and modulate the immune response in an extensive burn model. Cell Transplant. 2016; 25(2): 201–15, CrossRef.
Ozturk S, Karagoz H. Experimental stem cell therapies on burn wound: Do source, dose, timing and method matter? Burns. 2015; 41(6): 1133–9, CrossRef.
Berebichez-Fridman R, Montero-Olvera PR. Sources and clinical applications of mesenchymal stem cells: State-of-the-art review. Sultan Qaboos Univ Med J. 2018; 18(3): e264–77, CrossRef.
Lina Y, Wijaya A. Adipose-derived stem cells for future regenerative system medicine. Indones Biomed J. 2012; 4(2): 59-72, CrossRef.
Ding DC, Chang YH, Shyu WC, Lin SZ. Human umbilical cord mesenchymal stem cells: A new era for stem cell therapy. Cell Transplant. 2015; 24(3): 339–47, CrossRef.
Meiliana A, Wijaya A. Application of umbilical cord blood stem cells in regenerative medicine. Indones Biomed J. 2014; 6(3): 115-22, CrossRef.
Badiavas AR, Badiavas EV. Potential benefits of allogeneic bone marrow mesenchymal stem cells for wound healing. Expert Opin Biol Ther. 2011; 11(11): 1447–54, CrossRef.
Sandra F. Role of herbal extract in stem cell development. Mol Cell Biomed Sci. 2018; 2(1): 19-22, CrossRef.
Sandra F, Sudiono J, Feter Y, Afiana NS, Chandra JN, Abdullah K, Shafira J, Chouw A. Investigation on cell surface markers of dental pulp stem cell isolated from impacted third molar based on International Society for Cellular Therapy proposed mesenchymal stem cell markers. Mol Cell Biomed Sci. 2019; 3(1): 1-6, CrossRef.
Feter Y, Afiana NS, Chandra JN, Abdullah K, Shafira J, Sandra F. Dental mesenchymal stem cell: Its role in tooth development, types, surface antigens and differentiation potential. Mol Cell Biomed Sci. 2017; 1(2): 50-7, CrossRef.
Ankrum JA, Ong JF, Karp JM. Mesenchymal stem cells: Immune evasive, not immune privileged. Nat Biotechnol. 2014; 32(3): 252–60, CrossRef.
Hare JM, Fishman JE, Gerstenblith G, DiFede Velazquez DL, Zambrano JP, Suncion VY, et al. Comparison of allogeneic vs autologous bone marrow–derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy. JAMA. 2012; 308(22): 2369–79, CrossRef.
Jiang LL, Li H, Liu L. Xenogeneic stem cell transplantation: Research progress and clinical prospects. World J Clin Cases. 2021; 9(16): 3826–37, CrossRef.
Lee DE, Ayoub N, Agrawal DK. Mesenchymal stem cells and cutaneous wound healing: Novel methods to increase cell delivery and therapeutic efficacy. Stem Cell Res Ther. 2016; 7: 37, CrossRef.
Kallmeyer K, André-Lévigne D, Baquié M, Krause KH, Pepper MS, Pittet-Cuénod B, et al. Fate of systemically and locally administered adipose-derived mesenchymal stromal cells and their effect on wound healing. Stem Cells Transl Med. 2020; 9(1): 131–44, CrossRef.
Lichtenauer M, Nickl S, Hoetzenecker K, Mangold A, Moser B, Zimmermann M, et al. Phosphate buffered saline containing calcium and magnesium elicits increased secretion of interleukin-1 receptor antagonist. Lab Med. 2009; 40(5): 290–3, CrossRef.
Emer J. Platelet-rich plasma (PRP): Current applications in dermatology. Skin Ther Lett. 2019; 24(5): 1–6, article.
Conde Montero E, Fernández Santos ME, Suárez Fernández R. Platelet-rich plasma: Applications in dermatology. Actas Dermosifiliogr. 2015; 106(2): 104–11, CrossRef.
Karina K, Biben JA, Ekaputri K, Rosadi I, Rosliana I, Afini I, et al. In vivo study of wound healing processes in Sprague-Dawley model using human mesenchymal stem cells and platelet-rich plasma. Biomed Res Ther. 2021; 8(4): 4316–24, CrossRef.
Sell S. Stem Cells Handbook. 2nd ed. New York: Humana Press; 2013, article.
McKee C, Chaudhry GR. Advances and challenges in stem cell culture. Colloids Surf B Biointerfaces. 2017; 159: 62–77, CrossRef.
Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: Cell biology to clinical progress. NPJ Regen Med. 2019; 4: 22, CrossRef.
Murphy MB, Moncivais K, Caplan AI. Mesenchymal stem cells: Environmentally responsive therapeutics for regenerative medicine. Exp Mol Med. 2013; 45(11): e54, CrossRef.
Musiał-Wysocka A, Kot M, Majka M. The pros and cons of mesenchymal stem cell-based therapies. Cell Transplant. 2019; 28(7): 801–12, CrossRef.
Strong AL, Neumeister MW, Levi B. Stem cells and tissue engineering: Regeneration of the skin and its contents. Clin Plast Surg. 2017; 44(3): 635–50, CrossRef.
Jiang W, Xu J. Immune modulation by mesenchymal stem cells. Cell Prolif. 2020; 53(1): e12712, CrossRef.
Putra A. Basic Molecular Stem Cell. Vol. 1. Semarang: Unissula Press; 2019, article.
Xi J, Yan X, Zhou J, Yue W, Pei X. Mesenchymal stem cells in tissue repairing and regeneration: Progress and future. Burn Trauma. 2013; 1(1): 13-20, CrossRef.
Ma S, Xie N, Li W, Yuan B, Shi Y, Wang Y. Immunobiology of mesenchymal stem cells. Cell Death Differ. 2014; 21(2): 216–25, CrossRef.
Vizoso FJ, Eiro N, Cid S, Schneider J, Perez-Fernandez R. Mesenchymal stem cell secretome: Toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci. 2017; 18(9): 1852, CrossRef.
Meiliana A, Dewi NM, Wijaya A. Stem cell therapy in wound healing and tissue regeneration. Indones Biomed J. 2016; 8(2): 61-70, CrossRef.
Elloso M, Kambli A, Aijaz A, van de Kamp A, Jeschke MG. Burns in the elderly: Potential role of stem cells. Int J Mol Sci. 2020; 21(13): 4604, CrossRef.
Jeschke MG, van Baar ME, Choudhry MA, Chung KK, Gibran NS, Logsetty S. Burn injury. Nat Rev Dis Prim. 2020; 6(1): 11, CrossRef.
Babu R, Babu M. Oxidative stress in major thermal burns: Its implications and significance. Indian J Burns. 2018; 26: 38–43, CrossRef.
Varma S, Orgel JP, Schieber JD. Nanomechanics of type I collagen. Biophys J. 2016; 111(1): 50–6, CrossRef.
Gencoglu H, Orhan C, Sahin E, Sahin K. Undenatured type II collagen (UC-II) in joint health and disease: A review on the current knowledge of companion animals. Animals. 2020; 10(4): 697, CrossRef.
Wang C, Brisson BK, Terajima M, Li Q, Hoxha K, Han B, et al. Type III collagen is a key regulator of the collagen fibrillar structure and biomechanics of articular cartilage and meniscus. Matrix Biol. 2020; 85–86: 47–67, CrossRef.
Rose LF, Chan RK. The burn wound microenvironment. Adv Wound Care. 2016; 5(3): 106–18, CrossRef.
DOI: https://doi.org/10.21705/mcbs.v6i3.252
Copyright (c) 2022 Cell and BioPharmaceutical Institute

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Indexed by:
Cell and BioPharmaceutical Institute