In silico Study of Essential Oil of Bambusa vulgaris Leaves as an Anti Beta-lactamase Compound
Abstract
Background: Klebsiella pneumoniae is known as an extended spectrum beta (β)-lactamases (ESBLs)-producing bacteria, which produces enzymes that cause resistance to β-lactam antibiotics by degrading β-lactam ring. A solution is needed to prevent the degradation of the β-lactam ring. In this in silico study, combining β-lactam antibiotics with secondary metabolites has the possibility to inhibit the active site of the β-lactamase enzyme. This study aimed to explore the potential of the essential oil of yellow bamboo (Bambusa vulgaris) leaves as inhibitors of β-lactamase.
Materials and methods: This research was conducted by simulating molecular docking to determine the interaction of ligands with proteins, pharmacological tests of compounds based on the Lipinski’s rule of five, and ligand toxicity tests with pkCSM.
Results: The free bond energy values (∆G) were in the range of -4.3 to -8.0 kcal/mol. The ligands with the best ∆G value were sulfur pentafluoride (-8.0 kcal/mol), squalene (-7.3 kcal/mol), 3-aminodibenzofuran (-7.1 kcal/mol), and 2- monolaurin (-5.5 kcal/mol). Secondary metabolites from the essential oil of B. vulgaris leaves fulfilled Lipinski’s rule of five, so that oral use can be carried out except for squalene and tridecane.
Conclusion: Secondary metabolite compounds in the essential oil that have potential as oral drugs based on the Lipinski pharmacological test and the pkCSM toxicity test are dipivaloylmethane, β-ocimene, 2-monolaurin, and undecane.
Keywords: β-lactamase, Bambusa vulgaris, essential oil, Klebsiella pneumoniae
Full Text:
PDFReferences
Noerwidayati E, Dahesihdewi A, Sianipar O. Screening of extended-spectrum β-lactamases (ESBL)-producing Klebsiella pneumoniae with ChromID ESBL media. Indones Biomed J. 2018; 10(3): 217-21, CrossRef.
Moehario LH, Robertus T, Karuniawati A, Sedono R, Lestari DC, Yasmon A. Gene families of AmpC-producing Enterobacteriaceae present in the intensive care unit of Cipto Mangunkusumo Hospital Jakarta. Indones Biomed J. 2019; 11(1): 107-12, CrossRef.
Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States, 2019. Atlanta: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention; 2019, article.
Suwantarat N, Carroll KC. Epidemiology and molecular characterization of multidrug-resistant Gram-negative bacteria in Southeast Asia. Antimicrob Resist Infect Control. 2016; 5: 15, CrossRef.
Wei J, Wenjie Y, Ping L, Na W, Haixia R, Xuequn Z. Antibiotic resistance of Klebsiella pneumoniae through β-arrestin recruitment-induced β-lactamase signaling pathway. Exp Ther Med. 2018; 15(3): 2247-54, CrossRef.
Khasanah RN, Puspitasari I, Nuryastuti T, Yuniarti N. Prevalensi multidrug-resistant Klebsiella pneumonia dan evaluasi kesesuaian antibiotik empiris berdasarkan nilai prediksi farmakokinetik terhadap outcome klinis di RSUP Dr Soeradji Tirtonegoro Klaten. Maj Farm. 2019; 16(1): 27-33, CrossRef.
Puspitasari D, Rusli EA, Husada D, Kartina L. Escherichia coli and Klebsiella pneumonia as the most common bacteria causing catheter associated urinary tract infection. Mol Cell Biomed Sci. 2021; 5(3): 121-6, CrossRef.
Manuaba IA, Iswari IS, Pinatih KJ. Prevalensi bakteri Escherichia coli dan Klebsiella pneumoniae penghasil extended spectrum beta lactamase (ESBL) yang diisolasi dari pasien pneumonia di RSUP Sanglah periode tahun 2019-2020. J Med Udayana. 2021; 10(12): 51-7, CrossRef.
Ayatollahi J, Sharifyazdi M, Fadakarfard R, Shahcheraghi SH. Antibiotic resistance pattern of Klebsiella pneumoniae in obtained samples from Ziaee Hospital of Ardakan, Yazd, Iran during 2016 to 2017. Iberoam J Med. 2020; 2: 32-6, article.
Paramita DA, Nasution K, Lubis NZ. Microbial patterns and antimicrobial susceptibility on pediatric patients with pressure ulcers. Mol Cell Biomed Sci. 2019; 3(1): 17-21, CrossRef.
Arslan I. Trends in antimicrobial resistance in healthcare-associated infections: A global concern. Encycl Infect Immun. 2021; 4: 652-61.
Bush K, Bradford PA. β-lactams and β-lactamase inhibitors: An overview. Cold Spring Harb Perspect Med. 2016; 6(8): a025247, CrossRef.
Wivagg CN, Bhattacharyya RP, Hung DT. Mechanisms of β-lactam killing and resistance in the context of Mycobacterium tuberculosis. J Antibiot. 2014; 67(9): 645-54, CrossRef.
Biutifasari V. Extended spectrum beta-lactamase (ESBL). Oceana Biomed J. 2018; 1(1): 1-11, CrossRef.
López-Agudelo VA, Gómez-Ríos D, Ramirez-Malule H. Clavulanic acid production by Streptomyces clavuligerus: Insights from systems biology, strain engineering, and downstream processing. Antibiotics. 2021; 10(1): 84, CrossRef.
Dey D, Ghosh S, Ray R, Hazra B. Polyphenolic secondary metabolites synergize the activity of commercial antibiotics against clinical isolates of β-lactamase-producing Klebsiella pneumoniae. Phytother Res. 2016; 30(2): 272-82, CrossRef.
Ayeni MJ, Oyeyemi SD, Kayode J, Abanikanda AI. Phytochemical, proximate and mineral analyses of the leaves of Bambusa vulgaris L. and Artocarpus altilis L. Ghana J Sci. 2018; 59: 69-77, CrossRef.
Munawaroh HS, Gumilar GG, Nurjanah F, Yuliani G, Aisyah S, Kurnia D, et al. In-vitro molecular docking analysis of microalgae extracted phycocyanin as an anti-diabetic candidate. Biochem Eng J. 2020; 161: 107666, CrossRef.
Girsang E, Lister INE, Ginting CN, Khu A, Samin B, Widowati W, Wibowo S, Rizal R. Chemical constituents of snake fruit (Salacca zalacca (Gaert.) Voss) peel and in silico anti-aging analysis. Mol Cell Biomed Sci. 2019; 3(2): 122-8, CrossRef.
Karami TK, Hailu S, Feng S, Graham R, Gukasyan HJ. Eyes on Lipinski's rule of five: A new "rule of thumb" for physicochemical design space of ophthalmic drugs. J Ocul Pharmacol Ther. 2022; 38(1): 43-55, CrossRef.
Atewolara-Odule OC, Olubomehin OO, Adesanya EA, Hashimi AM, Ogunmoye AO. Chemical composition of essential oils from Bambusa vulgaris leaf (fresh and dried) Schrad. Ex J.C. Wendl. [Poaceae] obtained in Nigeria. J Res Rev Sci. 2018; 5(1): 8-13, CrossRef.
Listyani TA, Herowati R. Analisis docking molekuler senyawa derivat phthalimide sebagai inhibitor non-nukleosida HIV-1 reverse transcriptase. J Farm Indones. 2018; 15(2): 123-34, CrossRef.
Carcione D, Siracusa C, Sulejmani A, Leoni V, Intra J. Old and new beta-lactamase inhibitors: Molecular structure, mechanism of action, and clinical use. Antibiotics. 2021; 10(8): 995, CrossRef.
Suhadi A, Rizarullah R, Feriyani F. Simulasi docking senyawa aktif daun binahong sebagai inhibitor enzyme aldose reductase. SEL J Penelit Kesehat. 2019; 6(2): 55-65, CrossRef.
Kartasasmita RE, Herowati R, Harmastuti N, Gusdinar T. Quercetin derivatives docking based on study of flavonoids interaction to cyclooxygenase-2. Indones J Chem. 2009; 9(2): 297-302, CrossRef.
Pestana-Nobles R, Aranguren-Díaz Y, Machado-Sierra E, Yosa J, Galan-Freyle NJ, Sepulveda-Montaño LX, et al. Docking and molecular dynamic of microalgae compounds as potential inhibitors of beta-lactamase. Int J Mol Sci. 2022; 23(3): 1630, CrossRef.
Sharma R, Jade D, Mohan S, Chandel R, Sugumar S. In-silico virtual screening for identification of potent inhibitor for L2-β-lactamase from Stenotrophomonas maltophilia through molecular docking, molecular dynamics analysis study. J Biomol Struct Dyn. 2021; 39(18): 7123-37, CrossRef.
Sen DJ, Nandi K, Saha D. Rule of five: The five men army to cross the blood brain barrier for therapeutically potent. World J Adv Healthc Res. 2021; 5(3): 206-11, article.
Setiawan T, Ambarsari L, Sumaryada TI. Anticancer Study of Wonogiri’s Curcuma xanthorhiza roxb Ethanol Fraction as Jamu by Flexible Docking Methods. Int J Hybrid Inf Technol. 2017; 10(1): 277-88, CrossRef.
Choy YB, Prausnitz MR. The rule of five for non-oral routes of drug delivery: Ophthalmic, inhalation and transdermal. Pharm Res. 2011; 28(5): 943-8, CrossRef.
Kesuma D, Purwanto BT, Hardjono S. Uji in silico aktivitas sitotoksik dan toksisitas senyawa turunan N-(benzoil)-N’-feniltiourea sebagai calon obat antikanker. J Pharm Sci Clin Res. 2018; 3(1): 1-11, CrossRef.
Rowaiye AB, Ogugua AJ, Ibeanu G, Bur D, Asala MT, Ogbeide OB, et al. Identifying potential natural inhibitors of Brucella melitensis methionyl-tRNA synthetase through an in-silico approach. PLoS Negl Trop Dis. 2022; 16(3): e0009799, CrossRef.
El-Din HM, Loutfy SA, Fathy N, Elberry MH, Mayla AM, Kassem S, et al. Molecular docking based screening of compounds against VP40 from ebola virus. Bioinformation. 2016; 12(3): 192-6, CrossRef.
Diaza RG, Manganelli S, Esposito A, Roncaglioni A, Manganaro A, Benfenati E. Comparison of in silico tools for evaluating rat oral acute toxicity. SAR QSAR Environ Res. 2015; 26(1): 1-27, CrossRef.
Ouyang Q, Wang L, Mu Y, Xie XQ. Modeling skin sensitization potential of mechanistically hard-to-be-classified aniline and phenol compounds with quantum mechanistic properties. BMC Pharmacol Toxicol. 2014; 15(1): 1-9, CrossRef.
Confino-Cohen R, Rosman Y, Meir-Shafrir K, Stauber T, Lachover-Roth I, Hershko A, et al. Oral challenge without skin testing safely excludes clinically significant delayed-onset penicillin hypersensitivity. J Allergy Clin Immunol Pract. 2017; 5(3): 669-75, CrossRef.
DOI: https://doi.org/10.21705/mcbs.v6i3.278
Copyright (c) 2022 Cell and BioPharmaceutical Institute

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Indexed by:
Cell and BioPharmaceutical Institute