The Role of Malondialdehyde (MDA) and Ferric Reducing Antioxidant Power (FRAP) in Patients with Hypertension

Rohsan Alam, Haseeb Ahsan, Saba Khan

Abstract


Oxidative stress contributes to the pathogenesis of hypertension and studies have shown that hypertension is associated with an increase in oxidative stress. Reactive oxygen species (ROS) lead to hypertension and antioxidants may be beneficial for its prevention. The main cause of oxidative stress in hypertension is endothelial dysfunction due to the malfunctions in the vasodilator systems, specifically the molecular mechanism of ROS and nitric oxide (NO). The level of malondialdehyde (MDA), a biomarker of lipid peroxidation and oxidative stress, is found to be higher in hypertension patients. Total antioxidant capacity (TAC), which has a strong relationship with blood pressure, is determined through the ferric reducing antioxidant power (FRAP). The aim of the review article is to elucidate the role of MDA and FRAP in hypertension.

Keywords: oxidative stress, hypertension, blood pressure, oxidative damage, malondialdehyde, FRAP


Full Text:

PDF

References


James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: Report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014; 311(5): 507-20, CrossRef.

U.S. Department of Health and Human Services. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Maryland: National Institute of Health; 2004, article.

Gupta R. Trends in hypertension epidemiology in India. J Hum Hypertens. 2004; 18(2): 73-8, CrossRef.

Chrissobolis S, Didion SP, Kinzenbaw DA, Schrader LI, Dayal S, Lentz SR, et al. Glutathione peroxidase-1 plays a major role in protecting against angiotensin II-induced vascular dysfunction. Hypertension. 2008; 51(4): 872-7, CrossRef.

Zhou XJ, Vaziri ND, Wang XQ, Silva FG, Laszik Z. Nitric oxide synthase expression in hypertension induced by inhibition of glutathione synthase. J Pharmacol Exp Ther. 2002; 300(3): 762-7, CrossRef.

Vaziri ND. Pathogenesis of lead-induced hypertension: Role of oxidative stress. J Hypertens Suppl. 2002; 20(3): S15-20, article.

Lim CS, Vaziri ND. The effects of iron dextran on the oxidative stress in cardiovascular tissues of rats with chronic renal failure. Kidney Int. 2004; 65(5): 1802-9, CrossRef.

Wilcox CS, Pearlman A. Chemistry and antihypertensive effects of tempol and other nitroxides. Pharmacol Rev. 2008; 60(4): 418-69, CrossRef.

New concepts in reactive oxygen species and cardiovascular reperfusion physiology. Cardiovasc Res. 2004; 61(3): 461-70, CrossRef.

Juránek I, Bezek S. Controversy of free radical hypothesis: reactive oxygen species--cause or consequence of tissue injury? Gen Physiol Biophys. 2005; 24(3): 263-78, article.

Russo C, Olivieri O, Girelli D, Faccini G, Zenari ML, Lombardi S, et al. Anti-oxidant status and lipid peroxidation in patients with essential hypertension. J Hypertens. 1998; 16(9): 1267-71, CrossRef.

Lassègue B, Griendling KK. Reactive oxygen species in hypertension; An update. Am J Hypertens. 2004; 17(9): 852-60, CrossRef.

Touyz RM, Schiffrin EL. Reactive oxygen species in vascular biology: Implications in hypertension. Histochem Cell Biol. 2004; 122(4): 339-52, CrossRef.

Granger DN, Kvietys PR. Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol. 2015; 6: 524-51, CrossRef.

Tanito M, Nakamura H, Kwon YW, Teratani A, Masutani H, Shioji K, et al. Enhanced oxidative stress and impaired thioredoxin expression in spontaneously hypertensive rats. Antioxid Redox Signal. 2004; 6(1): 89-97, CrossRef.

Dusting GJ, Akita K, Hickey H, Smith M, Gurevich V. Cyclosporin A and tacrolimus (FK506) suppress expression of inducible nitric oxide synthase in vitro by different mechanisms. Br J Pharmacol. 1999; 128(2): 337-44, CrossRef.

Rodrigo R, González J, Paoletto F. The role of oxidative stress in the pathophysiology of hypertension. Hypertens Res. 2011; 34(4): 431-40, CrossRef.

Salo DC, Pacifici RE, Lin SW, Giulivi C, Davies KJ. Superoxide dismutase undergoes proteolysis and fragmentation following oxidative modification and inactivation. J Biol Chem. 1990; 265(20): 11919-27, CrossRef.

Sinet PM, Garber P. Inactivation of the human CuZn superoxide dismutase during exposure to O-2 and H2O2. Arch Biochem Biophys. 1981; 212(2): 411-6, CrossRef.

Redón J, Oliva MR, Tormos C, Giner V, Chaves J, Iradi A, Sáez GT. Antioxidant activities and oxidative stress byproducts in human hypertension. Hypertension. 2003; 41(5): 1096-101, CrossRef.

Gönenç A, Hacışevki A, Tavil Y, Çengel A, Torun M. Oxidative stress in patients with essential hypertension: A comparison of dippers and non-dippers. Eur J Intern Med. 2013; 24(2): 139-44, CrossRef.

Grossman E. Does increased oxidative stress cause hypertension? Diabetes Care. 2008; 31 Suppl 2: S185-9, CrossRef.

Nishiyama A, Yao L, Nagai Y, Miyata K, Yoshizumi M, Kagami S, et al. Possible contributions of reactive oxygen species and mitogen-activated protein kinase to renal injury in aldosterone/salt-induced hypertensive rats. Hypertension. 2004; 43(4): 841-8, CrossRef.

Griendling KK, Camargo LL, Rios FJ, Alves-Lopes R, Montezano AC, Touyz RM. Oxidative Stress and Hypertension. Circ Res. 2021; 128(7): 993-1020, CrossRef.

Puspasari A, Enis RN, Herlambang H. Genetic variant of vascular endothelial growth factor (VEGF)-A rs699947 is associated with preeclampsia. Mol Cell Biomed Sci. 2022; 6(2): 70-6, CrossRef.

Akbar MIA, Sari IM, Ernawati E, Aditiawarman A. Plasma level of umbilical cord hemeoxygenase-1 (HO-1) and neonatal outcome in early onset and late onset severe preeclampsia. Mol Cell Biomed Sci. 2019; 3(1): 54-9, CrossRef.

Ramadhanti R, Helda H. Association of hypertension and chronic kidney disease in population aged ≥18 years old. Mol Cell Biomed Sci. 2021; 5(3): 137-44, CrossRef.

Rodrigo R, Passalacqua W, Araya J, Orellana M, Rivera G. Implications of oxidative stress and homocysteine in the pathophysiology of essential hypertension. J Cardiovasc Pharmacol. 2003; 42(4): 453-61, CrossRef.

Neri S, Guidotti S, Bini C, Pelotti S, D'Adamo S, Minguzzi M, Platano D, Santi S, Mariani E, Cattini L, Borzì RM. Oxidative stress-induced DNA damage and repair in primary human osteoarthritis chondrocytes: Focus on IKKα and the DNA mismatch repair system. Free Radic Biol Med. 2021; 166: 212-25, CrossRef.

Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med. 2001; 30(11): 1191-212, CrossRef.

Lennon SV, Martin SJ, Cotter TG. Dose-dependent induction of apoptosis in human tumour cell lines by widely diverging stimuli. Cell Prolif. 1991; 24(2): 203-14, CrossRef.

Jusup I, Batubara L, Ngestiningsih D, Fulyani F, Paveta DA, Ate Bancin PTL. Association between malondialdehyde, GSH/GSSG ratio and bone mineral density in postmenopausal women. Mol Cell Biomed Sci. 2021; 5(1): 13-7, CrossRef.

Valko M, Morris H, Cronin MT. Metals, toxicity and oxidative stress. Curr Med Chem. 2005; 12(10): 1161-208, CrossRef.

Fischbacher A, von Sonntag C, Schmidt TC. Hydroxyl radical yields in the Fenton process under various pH, ligand concentrations and hydrogen peroxide/Fe(II) ratios. Chemosphere. 2017; 182: 738-44, CrossRef.

Kehrer JP. The Haber-Weiss reaction and mechanisms of toxicity. Toxicology. 2000; 149(1): 43-50, CrossRef.

Dziubla T, Butterfield DA. Oxidative Stress and Biomaterials. 1st ed. Amsterdam: Academic Press; 2016, article.

Jebari-Benslaiman S, Galicia-García U, Larrea-Sebal A, Olaetxea JR, Alloza I, Vandenbroeck K, et al. Pathophysiology of atherosclerosis. Int J Mol Sci. 2022; 23(6): 3346, CrossRef.

Sun HJ, Wu ZY, Nie XW, Bian JS. Role of endothelial dysfunction in cardiovascular diseases: The link between inflammation and hydrogen sulfide. Front Pharmacol. 2020; 10: 1568, CrossRef.

Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G, et al. The vascular endothelium and human diseases. Int J Biol Sci. 2013; 9(10): 1057-69, CrossRef.

Hamilos M, Petousis S, Parthenakis F. Interaction between platelets and endothelium: From pathophysiology to new therapeutic options. Cardiovasc Diagn Ther. 2018; 8(5): 568-80, CrossRef.

Kaur R, Kaur M, Singh J. Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: Molecular insights and therapeutic strategies. Cardiovasc Diabetol. 2018; 17(1): 121, CrossRef.

Halliwell B. Biochemistry of oxidative stress. Biochem Soc Trans. 2007; 35(Pt 5): 1147-50, CrossRef.

Guo L, Chen Z, Amarnath V, Davies SS. Identification of novel bioactive aldehyde-modified phosphatidylethanolamines formed by lipid peroxidation. Free Radic Biol Med. 2012; 53(6): 1226-38, CrossRef.

Shodehinde SA, Oboh G. Antioxidant properties of aqueous extracts of unripe Musa paradisiaca on sodium nitroprusside induced lipid peroxidation in rat pancreas in vitro. Asian Pac J Trop Biomed. 2013; 3(6): 449-57, CrossRef.

Serudji J, Irawati N, Mose JC, Ali H, Yusrawati Y. Elevated serum reactive oxygen species level predicts early abortion. Mol Cell Biomed Sci. 2021; 5(1): 37-40, CrossRef.

Pryor WA. The antioxidant nutrients and disease prevention--what do we know and what do we need to find out? Am J Clin Nutr. 1991; 53(1 Suppl): 391S-3S, CrossRef.

Janero DR. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med. 1990; 9(6): 515-40, CrossRef.

Ozansoy G, Akin B, Aktan F, Karasu C. Short-term gemfibrozil treatment reverses lipid profile and peroxidation but does not alter blood glucose and tissue antioxidant enzymes in chronically diabetic rats. Mol Cell Biochem. 2001; 216(1-2): 59-63, CrossRef.

Kedziora-Kornatowska KZ, Luciak M, Blaszczyk J, Pawlak W. Effect of aminoguanidine on erythrocyte lipid peroxidation and activities of antioxidant enzymes in experimental diabetes. Clin Chem Lab Med. 1998; 36(10): 771-5, CrossRef.

van Dam PS, van Asbeck BS, Van Oirschot JF, Biessels GJ, Hamers FP, Marx JJ. Glutathione and alpha-lipoate in diabetic rats: Nerve function, blood flow and oxidative state. Eur J Clin Invest. 2001; 31(5): 417-24, CrossRef.

Ho E, Karimi Galougahi K, Liu CC, Bhindi R, Figtree GA. Biological markers of oxidative stress: Applications to cardiovascular research and practice. Redox Biol. 2013; 1(1): 483-91, CrossRef.

Steinberg D. Low density lipoprotein oxidation and its pathobiological significance. J Biol Chem. 1997; 272(34): 20963-6, CrossRef.

Chisolm GM, Steinberg D. The oxidative modification hypothesis of atherogenesis: An overview. Free Radic Biol Med. 2000; 28(12): 1815-26, CrossRef.

Porter NA, Caldwell SE, Mills KA. Mechanisms of free radical oxidation of unsaturated lipids. Lipids. 1995; 30(4): 277-90, CrossRef.

de la Sierra A, Larrousse M. Endothelial dysfunction is associated with increased levels of biomarkers in essential hypertension. J Hum Hypertens. 2010; 24(6): 373-9, CrossRef.

Zhao Z. Iron and oxidizing species in oxidative stress and Alzheimer's disease. Aging Med. 2019; 2(2): 82-7, CrossRef.

Kaneto H, Kajimoto Y, Miyagawa J, Matsuoka T, Fujitani Y, Umayahara Y, et al. Beneficial effects of antioxidants in diabetes: possible protection of pancreatic beta-cells against glucose toxicity. Diabetes. 1999; 48(12): 2398-406, CrossRef.

Dandu AM, Inamdar NM. Evaluation of beneficial effects of antioxidant properties of aqueous leaf extract of Andrographis paniculata in STZ-induced diabetes. Pak J Pharm Sci. 2009; 22(1): 49-52, article.

Subash-Babu P, Alshatwi AA, Ignacimuthu S. Beneficial antioxidative and antiperoxidative effect of cinnamaldehyde protect streptozotocin-induced pancreatic β-cells damage in Wistar rats. Biomol Ther. 2014; 22(1): 47-54, CrossRef.

Domekouo UL, Longo F, Tarkang PA, Tchinda AT, Tsabang N, Donfagsiteli NT, et al. Evaluation of the antidiabetic and antioxidant properties of Morinda lucida stem bark extract in streptozotocin intoxicated rats. Pak J Pharm Sci. 2016; 29(3): 903-11, article.

Hajleh MNA, Khleifat KM, Alqaraleh M, Al-Hraishat E, Al-Limoun MO, Qaralleh H, et al. Antioxidant and antihyperglycemic effects of Ephedra foeminea aqueous extract in streptozotocin-induced diabetic rats. Nutrients. 2022; 14(11): 2338, CrossRef.

Nasri H, Shirzad H, Baradaran A, Rafieian-Kopaei M. Antioxidant plants and diabetes mellitus. J Res Med Sci. 2015; 20(5): 491-502, CrossRef.

Przeor M. Some common medicinal plants with antidiabetic activity, known and available in Europe (a mini-eview). Pharmaceuticals. 2022; 15(1): 65, CrossRef.

Salehi B, Ata A, V Anil Kumar N, Sharopov F, Ramírez-Alarcón K, Ruiz-Ortega A, et al. Antidiabetic potential of medicinal plants and their active components. Biomolecules. 2019; 9(10): 551, CrossRef.

Zhang YJ, Gan RY, Li S, Zhou Y, Li AN, Xu DP, et al. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules. 2015; 20(12): 21138-56, CrossRef.

Forni C, Facchiano F, Bartoli M, Pieretti S, Facchiano A, D'Arcangelo D, et al. Beneficial role of phytochemicals on oxidative stress and age-related diseases. Biomed Res Int. 2019; 2019: 8748253, CrossRef.

Carr A, Frei B. The role of natural antioxidants in preserving the biological activity of endothelium-derived nitric oxide. Free Radic Biol Med. 2000; 28(12): 1806-14, CrossRef.

Soydinç S, Çelik A, Demiryürek S, Davutoğlu V, Tarakçıoğlu M, Aksoy M. The relationship between oxidative stress, nitric oxide and coronary artery disease. Eur J Gen Med 2007; 4(2): 62-6, CrossRef.

Kizhakekuttu TJ, Widlansky ME. Natural antioxidants and hypertension: promise and challenges. Cardiovasc Ther. 2010; 28(4): e20-32, CrossRef.

Rodrigo R, Prat H, Passalacqua W, Araya J, Guichard C, Bächler JP. Relationship between oxidative stress and essential hypertension. Hypertens Res. 2007; 30(12): 1159-67, CrossRef.

Rodrigo R, Libuy M, Feliú F, Hasson D. Oxidative stress-related biomarkers in essential hypertension and ischemia-reperfusion myocardial damage. Dis Markers. 2013; 35(6): 773-90, CrossRef.

Kurlak LO, Green A, Loughna P, Broughton Pipkin F. Oxidative stress markers in hypertensive states of pregnancy: Preterm and term disease. Front Physiol. 2014; 5: 310, CrossRef.

Bahadoran Z, Carlström M, Ghasemi A, Mirmiran P, Azizi F, Hadaegh F. Total antioxidant capacity of the diet modulates the association between habitual nitrate intake and cardiovascular events: A longitudinal follow-up in Tehran Lipid and Glucose Study. Nutr Metab. 2018; 15: 19vhttps://doi.org/10.1186/s12986-018-0254-2">CrossRef.

Wojdylo A, Oszmianski J, Czemerys R. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem. 2007; 105(3): 940-9, CrossRef.

Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal Biochem. 1996; 239(1): 70-6, CrossRef.

Payne AC, Mazzer A, Clarkson GJ, Taylor G. Antioxidant assays - consistent findings from FRAP and ORAC reveal a negative impact of organic cultivation on antioxidant potential in spinach but not watercress or rocket leaves. Food Sci Nutr. 2013; 1(6): 439-44, CrossRef.

Hisalkar P, Patne A, Karnik A, Fawade MM, Mumbare SS, et al. Ferric reducing ability of plasma with lipid peroxidation in type 2 diabetes. Int J Pharm Biol Sci. 2012; 42: 8–70, article.

Prior RL, Wu X, Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem. 2005; 53(10): 4290-302, CrossRef.

Ndhlala AR, Moyo M, Van Staden J. Natural antioxidants: Fascinating or mythical biomolecules? Molecules. 2010; 15(10): 6905-30, CrossRef.

Hsieh C, Rajashekaraiah V. Ferric reducing ability of plasma: a potential oxidative stress marker in stored plasma. Acta Haematol Pol. 2021; 52(1): 61-67, CrossRef.

Armas-Padilla MC, Armas-Hernández MJ, Sosa-Canache B, Cammarata R, Pacheco B, Guerrero J, et al. Nitric oxide and malondialdehyde in human hypertension. Am J Ther. 2007; 14(2): 172-6, CrossRef.

Krishna Mohan S, Venkataramana G. Status of lipid peroxidation, glutathione, ascorbic acid, vitamin E and antioxidant enzymes in patients with pregnancy--induced hypertension. Indian J Physiol Pharmacol. 2007; 51(3): 284-8, article.

EI-Bana SM, El-Din AE, Isamil ZA. Fetal and maternal oxidative stress in normal and abnormlapregancis. Ain Shans Med J. 2001; 52: 421- 31.

Wassmann S, Laufs U, Müller K, Konkol C, Ahlbory K, Bäumer AT, et al. Cellular antioxidant effects of atorvastatin in vitro and in vivo. Arterioscler Thromb Vasc Biol. 2002; 22(2): 300-5, CrossRef.

Miyajima K, Minatoguchi S, Ito Y, Hukunishi M, Matsuno Y, Kakami M, et al. Reduction of QTc dispersion by the angiotensin II receptor blocker valsartan may be related to its anti-oxidative stress effect in patients with essential hypertension. Hypertens Res. 2007; 30(4): 307-13, CrossRef.

Dohi Y, Ohashi M, Sugiyama M, Takase H, Sato K, Ueda R. Candesartan reduces oxidative stress and inflammation in patients with essential hypertension. Hypertens Res. 2003; 26(9): 691-7, CrossRef.

Rodrigo R, Guichard C, Charles R. Clinical pharmacology and therapeutic use of antioxidant vitamins. Fundam Clin Pharmacol. 2007; 21(2): 111-27, CrossRef.




DOI: https://doi.org/10.21705/mcbs.v7i2.288

Copyright (c) 2023 Cell and BioPharmaceutical Institute

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexed by:

               

                      


Cell and BioPharmaceutical Institute