Molecular Docking of Citrus amblycarpa Active Compounds against FTO, Leptin, and Resistin Protein

Roselina Panghiyangani, Juliyatin Putri Utami, Muhammad Akbar Baitullah, Novi Dwi Maulida

Abstract


Background: Citrus amblycarpa has been known to have various pharmacological activities, such as antioxidants, anticancer, antitumor, hepatoprotective, anti-inflammatory, antidiabetic, antiviral, antibacterial, and antifungal. Hesperidin, naringin, quercetin, rutin, gamma (γ)-aminobutyric acid (GABA), neoeriocitrin, and poncirin from C. amblycarpa were the major constituents that potentially act on some obesity proteins, such as fat mass and obesity-associated (FTO) protein, leptin, and resistin, the emerging targets in the treatment of obesity. This study aimed to investigate the interaction between major active compounds of C. amblycarpa with FTO, leptin and resistin.

Materials and methods: The ligands of the docking study were seven major chemical compounds found in peel of C. amblycarpa, i.e., hesperidin, naringin, quercetin, rutin, GABA, neoeriocitrin, and poncirin. FTO, leptin and resistin structure were taken from Protein Data Bank, while the C. amblycarpa compounds were prepared using Open Babel integrated into PyRx 8.0. Molecular docking simulation was performed using Autodock Vina integrated into PyRx 8.0. Virtual prediction and visualization of protein–ligand complexes were analyzed and visualized using Discovery Studio.

Results: All major compounds of C. amblycarpa peel used in this study did not have hepatotoxicity and AMES toxicity. Hesperidin had the lowest binding affinity score when interacted with FTO, leptin and resistin compared to other compounds. Moreover, GABA had the highest binding affinity score compared to other compounds.

Conclusion: Hesperidin may be a candidate obesity protein antagonist and may have potential as a treatment for obesity.

Keywords: Citrus amblycarpa, molecular docking, FTO, leptin, obesity, resistin


Full Text:

PDF SUPPLEMENT

References


Safitri DE, Rahayu NS. Determinan status gizi obesitas pada orang dewasa di perkotaan: Tinjauan sistematis. Arsip Kesehat Masy. 2020; 5(1): 1-15, CrossRef.

Riskesdas. Riskesdas 2018: Laporan Provinsi Kalimantan Selatan. Jakarta: Lembaga Penerbit Badan Penelitian dan Pengembangan Kesehatan; 2018, article.

Hastuti P. Genetika Obesitas. Yogyakarta: Gadjah Mada University Press; 2019.

Patonah, Susilawati E, Riduan A. Aktivitas antiobesitas ekstrak daun katuk (Sauropus androgynus L. Merr) pada model mencit obesitas. Pharm J Indones. 2018; 14(2): 137-52, CrossRef.

Ridwan, Febriza A, Linggi EB, Natzir R, Taslim NA. Correlation between blood pressure and obesity parameter against cystatin-C and adiponectin levels in serum of obese adolescent. Mol Cell Biomed Sci. 2020; 4(3): 105-12, CrossRef.

Yang Q, Xiao T, Guo J, Su Z. Complex relationship between obesity and the fat mass and obesity locus. Int J Biol Sci. 2017; 13(5): 615-29, CrossRef.

Lubis SM, Fattah M, Damanik HA, Batubara JRL. Association of fat mass and obesity-associated gene (FTO) rs9939609 variant with early onset obesity among Bataknese and Chinese children in Indonesia: A case-control study. Indones Biomed J. 2017; 9(3): 147-52, CrossRef.

Izquierdo AG, Crujeiras AB, Casanueva FF, Carreira MC. Leptin, obesity, and leptin resistance: Where are we 25 years later? Nutrients. 2019; 11(11): 2704, CrossRef.

Obradovic M, Sudar-Milovanovic E, Soskic S, Essack M, Arya S, Stewart AJ, et al. Leptin and obesity: Role and clinical implication. Front Endocrinol. 2021; 12: 585887, CrossRef.

Jonas MI, Kurylowicz A, Bartoszewicz Z, Lisik W, Jonas M, Domienik-Karlowicz J, et al. Adiponectin/resistin interplay in serum and in adipose tissue of obese and normal-weight individuals. Diabetol Metab Syndr. 2017; 9: 95, CrossRef.

Jung HK, Jeong YS, Park CD, Park CH, Hong JH. Inhibitory effect of citrus peel extract on lipid accumulation of 3T3-L1 adipocytes. J Korean Soc Appl Biol Chem. 2011; 54(2): 169-76, CrossRef.

Priani SE, Fakih TM. Studi interaksi molekular senyawa hesperidin dan nobiletin dari kulit buah jeruk terhadap enzim tyrosinase secara in silico. J Ilm Farm Farmasyifa. 2021; 4(1): 17-24, CrossRef.

Macheix J. Fruit Phenolics. Boca Raton: CRC Press; 2018.

Kusumawati IGAW, Putra IMWA, Yogeswara IBA. In vitro ACE inhibitory activity and bioactive compounds of aqueous extract of Citrus amblycarpa. Trad Med J. 2021; 26(2): 118-22, CrossRef.

Xiong H, Wang J, Ran Q, Lou G, Peng C, Gan Q, et al. Hesperidin: A therapeutic agent for obesity. Drug Des Devel Ther. 2019; 13: 3855-66, CrossRef.

Salmaso V, Moro S. Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: An overview. Front Pharmacol. 2018; 9: 923, CrossRef.

Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Methods Mol Biol. 2015; 1263: 243-50, CrossRef.

Baker DHA, Ibrahim EA, Salama ZAE. Citrus peels as a source of bioactive compounds with industrial and therapeutic applications. In: Badria FA, editor. Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications. London: IntechOpen; 2021, CrossRef.

Strømgaard K, Krogsgaard-Larsen P, Madsen U. Textbook of Drug Design and Discovery. 5th ed. Boca Raton: CRC Press; 2017, article.

Xu J, Dong J, Ding H, Wang B, Wang Y, Qiu Z, et al. Ginsenoside compound K inhibits obesity-induced insulin resistance by regulation of macrophage recruitment and polarization via activating PPARγ. Food Funct. 2022; 13(6): 3561-71, CrossRef.

Rehman K, Munawar SM, Akash MSH, Buabeid MA, Chohan TA, Tariq M, et al. Hesperidin improves insulin resistance via down-regulation of inflammatory responses: Biochemical analysis and in silico validation. PLoS One. 2020; 15(1): e0227637, CrossRef.

Surlitah S, Setiawan B, Briawan D. Perbaikan profil lipid pada perempuan dewasa kelebihan berat badan setelah intervensi sari jeruk kalamansi (Citrus microcarpa). J Gizi Pangan. 2017; 12(2): 93-100, CrossRef.

Alam MA, Kauter K, Brown L. Naringin improves diet-induced cardiovascular dysfunction and obesity in high carbohydrate, high fat diet-fed rats. Nutrients. 2013; 5(3): 637-50, CrossRef.

Kwon YJ, Kwon GE, Lee HS, Choi MH, Lee JW. The effect of orlistat on sterol metabolism in obese patients. Front Endocrinol. 2022; 13: 824269, CrossRef.

Kwon YJ, Lee H, Nam CM, Chang HJ, Yoon YR, Lee HS, et al. Effects of orlistat/phentermine versus phentermine on vascular endothelial cell function in obese and overweight adults: A randomized, double-blinded, placebo-controlled trial. Diabetes Metab Syndr Obes. 2021; 14: 941-50, CrossRef.

Zhang M, Zhang Y, Ma J, Guo F, Cao Q, Zhang Y, et al. The demethylase activity of FTO (fat mass and obesity associated protein) is required for preadipocyte differentiation. PLoS One. 2015; 10(7): e0133788, CrossRef.

Chang JY, Park JH, Park SE, Shon J, Park YJ. The fat mass- and obesity-associated (FTO) gene to obesity: Lessons from mouse models. Obesity. 2018; 26(11): 1674-86, CrossRef.

Hess ME, Hess S, Meyer KD, Verhagen LA, Koch L, Brönneke HS, et al. The fat mass and obesity associated gene (Fto) regulates activity of the dopaminergic midbrain circuitry. Nat Neurosci. 2013; 16(8): 1042-8, CrossRef.

Volkow ND, Wang GJ, Tomasi D, Baler RD. Obesity and addiction: Neurobiological overlaps. Obes Rev. 2013; 14(1): 2-18, CrossRef.

Gómez-Hernández A, Beneit N, Díaz-Castroverde S, Escribano Ó. Differential role of adipose tissues in obesity and related metabolic and vascular complications. Int J Endocrinol. 2016; 2016: 1216783, CrossRef.

Lukito AA, Bakri S, Kabo P, Wijaya A. The mechanism of coronary artery calcification in centrally obese non-diabetic men: Study on the interaction of leptin, free leptin index, adiponectin, hs-C reactive protein, bone morphogenetic protein-2 and matrix Gla protein. Mol Cell Biomed Sci. 2020; 4(2): 88-93, CrossRef.

Febriza A, Ridwan, As’ad S, Kasim VN, Idrus HH. Adiponectin and its role in inflammatory process of obesity. Mol Cell Biomed Sci. 2019; 3(2): 60-6, CrossRef.

Çakır I, Lining Pan P, Hadley CK, El-Gamal A, Fadel A, Elsayegh D, et al. Sulforaphane reduces obesity by reversing leptin resistance. Elife. 2022; 11: e67368, CrossRef.

Nieva-Vazquez A, Pérez-Fuentes R, Torres-Rasgado E, López-López JG, Romero JR. Serum resistin levels are associated with adiposity and insulin sensitivity in obese Hispanic subjects. Metab Syndr Relat Disord. 2014; 12(2): 143-8, CrossRef.

Benomar Y, Taouis M. Molecular mechanisms underlying obesity-induced hypothalamic inflammation and insulin resistance: Pivotal role of resistin/TLR4 pathways. Front Endocrinol. 2019; 10: 140, CrossRef.




DOI: https://doi.org/10.21705/mcbs.v7i1.295

Copyright (c) 2023 Cell and BioPharmaceutical Institute

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexed by:

               

                      


Cell and BioPharmaceutical Institute