The Role of Hypoxia-inducible Factor in Mycobacterium tuberculosis-infected Macrophages

Nina Fitriana, Febriana Catur Iswanti, Mohamad Sadikin


Tuberculosis is caused by Mycobacterium tuberculosis infection. During M. tuberculosis infection, there is a decrease in the partial pressure of oxygen in the granuloma microenvironment, which causes the hypoxia-inducible factor (HIF) to become stable. HIF functions as a transcription factor that regulates the expression of genes crucial for metabolic adaptation in hypoxic conditions. Recent research suggests that HIF plays a vital role in infectious and inflammatory conditions. Several studies have demonstrated that HIF signaling can enhance macrophages antimicrobial activity and bactericidal effect against M. tuberculosis, such as increasing macrophage autophagy, enhancing the effects of rifampicin, inhibiting p38 MAPK signaling, enhancing the regulation of effector antimicrobial pathways mediated by human β defensin 2 (hBD2) and vitamin D receptor (VDR), redirecting energy metabolism to glycolysis, and producing various cytokines. All these responses ultimately result in the inhibition of intracellular M. tuberculosis growth. HIF has therapeutic implications, potentially being a new candidate for host-directed therapy as a complement to existing antituberculosis drugs. Understanding the role of HIF in macrophages during M. tuberculosis infection and comprehending the host-pathogen relationship with M. tuberculosis is advantageous for developing future therapies.

Keywords: Mycobacterium tuberculosis, macrophages, hypoxia-inducible factor

Full Text:



Sulis G, Roggi A, Matteelli A, Raviglione MC. Tuberculosis: Epidemiology and control. Mediterr J Hematol Infect Dis. 2014; 6(1): e2014070, CrossRef.

Yunda DK, Witjaksono F, Nurwidya F. Correlation between protein intake, fat free mass, and total lymphocyte count with quality of life in pulmonary tuberculosis patients undergoing intensive phase treatment in Pekanbaru, Riau Province. Mol Cell Biomed Sci. 2020; 4(3): 128-34, CrossRef.

Almeida AS, Lago PM, Boechat N, Huard RC, Lazzarini LC, Santos AR, et al. Tuberculosis is associated with a down-modulatory lung immune response that impairs Th1-type immunity. J Immunol. 2009; 183(1): 718-31, CrossRef.

Pai M, Behr MA, Dowdy D, Dheda K, Divangahi M, Boehme CC, et al. Tuberculosis. Nat Rev Dis Primers. 2016; 2: 16076, CrossRef.

Choerunisa TF, Lismayanti L, Rostini T, Bayusantika R, Parwati I. Comparison of line probe assay (LPA) and Mycobacterium growth indicator tubes (MGIT) assay for second-line TB drug susceptibility testing. Indones Biomed J. 2021; 13(3): 256-60, CrossRef.

Boshoff HI, Barry CE 3rd. Tuberculosis - Metabolism and respiration in the absence of growth. Nat Rev Microbiol. 2005; 3(1): 70-80, CrossRef.

Via LE, Lin PL, Ray SM, Carrillo J, Allen SS, Eum SY, et al. Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates. Infect Immun. 2008; 76(6): 2333-40, CrossRef.

Bhandari T, Nizet V. Hypoxia-inducible factor (HIF) as a pharmacological target for prevention and treatment of infectious diseases. Infect Dis Ther. 2014; 3(2): 159-74, CrossRef.

Hayek I, Schatz V, Bogdan C, Jantsch J, Lührmann A. Mechanisms controlling bacterial infection in myeloid cells under hypoxic conditions. Cell Mol Life Sci. 2021; 78(5): 1887-907, CrossRef.

Shi L, Salamon H, Eugenin EA, Pine R, Cooper A, Gennaro ML. Infection with Mycobacterium tuberculosis induces the Warburg effect in mouse lungs. Sci Rep. 2015; 5: 18176, CrossRef.

Cramer T, Yamanishi Y, Clausen BE, Förster I, Pawlinski R, Mackman N, et al. HIF-1α is essential for myeloid cell-mediated inflammation. Cell. 2003; 112(5): 645-57, CrossRef.

Li Q, Xie Y, Cui Z, Huang H, Yang C, Yuan B, et al. Activation of hypoxia-inducible factor 1 (Hif-1) enhanced bactericidal effects of macrophages to Mycobacterium tuberculosis. Tuberculosis. 2021; 126: 102044, CrossRef.

Zenk SF, Hauck S, Mayer D, Grieshober M, Stenger S. Stabilization of hypoxia-inducible factor promotes antimicrobial activity of human macrophages against Mycobacterium tuberculosis. Front Immunol. 2021; 12: 678354, CrossRef.

Delogu G, Sali M, Fadda G. The biology of Mycobacterium tuberculosis infection. Mediterr J Hematol Infect Dis. 2013; 5(1): e2013070, CrossRef.

Hoffmann C, Leis A, Niederweis M, Plitzko JM, Engelhardt H. Disclosure of the mycobacterial outer membrane: Cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proc Natl Acad Sci U S A. 2008; 105(10): 3963-7, CrossRef.

Zuber B, Chami M, Houssin C, Dubochet J, Griffiths G, Daffé M. Direct visualization of the outer membrane of mycobacteria and corynebacteria in their native state. J Bacteriol. 2008; 190(16): 5672-80, CrossRef.

Kalscheuer R, Palacios A, Anso I, Cifuente J, Anguita J, Jacobs WR Jr, et al. The Mycobacterium tuberculosis capsule: A cell structure with key implications in pathogenesis. Biochem J. 2019; 476(14): 1995-2016, CrossRef.

Vilchèze C, Kremer L. Acid-fast positive and acid-fast negative Mycobacterium tuberculosis: The Koch paradox. Microbiol Spectr. 2017; 5(2), CrossRef.

Natarajan A, Beena PM, Devnikar AV, Mali S. A systemic review on tuberculosis. Indian J Tuberc. 2020; 67(3): 295-311, CrossRef.

Trivedi PC, Bartlett JJ, Pulinilkunnil T. Lysosomal biology and function: Modern view of cellular debris bin. Cells. 2020; 9(5): 1131, CrossRef.

Halliwell B. Phagocyte-derived reactive species: Salvation or suicide? Trends Biochem Sci. 2006; 31(9): 509-15, CrossRef.

Babior BM. The respiratory burst of phagocytes. J Clin Invest. 1984; 73(3): 599-601, CrossRef.

Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012; 148(3): 399-408, CrossRef.

Knight JA. Review: Free radicals, antioxidants, and the immune system. Ann Clin Lab Sci. 2000; 30(2): 145-58, article.

Canton M, Sánchez-Rodríguez R, Spera I, Venegas FC, Favia M, Viola A, et al. Reactive oxygen species in macrophages: Sources and targets. Front Immunol. 2021; 12: 734229, CrossRef.

Cavinato L, Genise E, Luly FR, Di Domenico EG, Del Porto P, Ascenzioni F. Escaping the phagocytic oxidative burst: The role of SODB in the survival of Pseudomonas aeruginosa within macrophages. Front Microbiol. 2020; 11: 326, CrossRef.

Asikin H, Mudjihartini N, Jusman S, Sadikin M, Anwar S. Relative hypoxia in immunized mice spleen macrophages as indicated by hypoxia inducible factors, cytoglobin and peroxisome proliferator activated receptor gamma coactivator (PGC)-1α. Indian J Public Health Res Dev. 2020; 1(11): 1150-4, CrossRef.

Rossi F, Bellavite P, Berton G, Dri P, Zabucchi G. The respiratory burst of phagocytic cells: Facts and problems. Adv Exp Med Biol. 1982; 141: 283-322, CrossRef.

Kaffenberger W, Clasen BP, van Beuningen D. The respiratory burst of neutrophils, a prognostic parameter in head and neck cancer? Clin Immunol Immunopathol. 1992; 64(1): 57-62, CrossRef.

Herb M, Schramm M. Functions of ROS in macrophages and antimicrobial immunity. Antioxidants. 2021; 10(2): 313, CrossRef.

Wang GL, Semenza GL. Purification and characterization of hypoxia-inducible factor 1. J Biol Chem. 1995; 270(3): 1230-7, CrossRef.

Annisa, Herningtyas EH, Purnomosari D. High keratin secretion of T47D Cell under hypoxic condition. Indones Biomed J. 2022; 14(4): 376-81, CrossRef.

Ziello JE, Jovin IS, Huang Y. Hypoxia-inducible factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. Yale J Biol Med. 2007; 80(2): 51-60, article.

Semenza GL. HIF-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol. 2001; 13(2): 167-71, CrossRef.

Rankin EB, Giaccia AJ. The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ. 2008; 15(4): 678-85, CrossRef.

Elks PM, Brizee S, van der Vaart M, Walmsley SR, van Eeden FJ, Renshaw SA, et al. Hypoxia inducible factor signaling modulates susceptibility to mycobacterial infection via a nitric oxide dependent mechanism. PLoS Pathog. 2013; 9(12): e1003789, CrossRef.

Palazon A, Goldrath AW, Nizet V, Johnson RS. HIF transcription factors, inflammation, and immunity. Immunity. 2014; 41(4): 518-28, CrossRef.

Nath B, Szabo G. Hypoxia and hypoxia inducible factors: Diverse roles in liver diseases. Hepatology. 2012; 55(2): 622-33, CrossRef.

Troeger JS, Schwabe RF. Hypoxia and hypoxia-inducible factor 1α: Potential links between angiogenesis and fibrogenesis in hepatic stellate cells. Liver Int. 2011; 31(2): 143-5, CrossRef.

Weidemann A, Johnson RS. Biology of HIF-1α. Cell Death Differ. 2008; 15(4): 621-7, CrossRef.

Takeda N, O'Dea EL, Doedens A, Kim JW, Weidemann A, Stockmann C, et al. Differential activation and antagonistic function of HIF-α isoforms in macrophages are essential for NO homeostasis. Genes Dev. 2010; 24(5): 491-501, CrossRef.

Santos SAD, Andrade DR Júnior. HIF-1alpha and infectious diseases: A new frontier for the development of new therapies. Rev Inst Med Trop Sao Paulo. 2017; 59: e92, CrossRef.

Peyssonnaux C, Datta V, Cramer T, Doedens A, Theodorakis EA, Gallo RL, et al. HIF-1α expression regulates the bactericidal capacity of phagocytes. J Clin Invest. 2005; 115(7): 1806-15, CrossRef.

Denko NC. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer. 2008; 8(9): 705-13, CrossRef.

Kominsky DJ, Campbell EL, Colgan SP. Metabolic shifts in immunity and inflammation. J Immunol. 2010; 184(8): 4062-8, CrossRef.

Cardoso MS, Silva TM, Resende M, Appelberg R, Borges M. Lack of the transcription factor hypoxia-inducible factor 1α (HIF-1α) in macrophages accelerates the necrosis of Mycobacterium avium-induced granulomas. Infect Immun. 2015; 83(9): 3534-44, CrossRef.

Glick D, Barth S, Macleod KF. Autophagy: Cellular and molecular mechanisms. J Pathol. 2010; 221(1): 3-12, CrossRef.

Shen P, Li Q, Ma J, Tian M, Hong F, Zhai X, et al. IRAK-M alters the polarity of macrophages to facilitate the survival of Mycobacterium tuberculosis. BMC Microbiol. 2017; 17(1): 185, CrossRef.

Sun HL, Liu YN, Huang YT, Pan SL, Huang DY, Guh JH, et al. YC-1 inhibits HIF-1 expression in prostate cancer cells: Contribution of Akt/NF-κB signaling to HIF-1alpha accumulation during hypoxia. Oncogene. 2007; 26(27): 3941-51, CrossRef.

Wan L, Xia T, Du Y, Liu J, Xie Y, Zhang Y, et al. Exosomes from activated hepatic stellate cells contain GLUT1 and PKM2: A role for exosomes in metabolic switch of liver nonparenchymal cells. FASEB J. 2019; 33(7): 8530-42, CrossRef.

Braverman J, Sogi KM, Benjamin D, Nomura DK, Stanley SA. HIF-1α is an essential mediator of IFN-γ-dependent immunity to Mycobacterium tuberculosis. J Immunol. 2016; 197(4): 1287-97, CrossRef.

Kraft C, Peter M, Hofmann K. Selective autophagy: Ubiquitin-mediated recognition and beyond. Nat Cell Biol. 2010; 12(9): 836-41, CrossRef.

Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem. 2007; 282(33): 24131-45, CrossRef.

Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000; 19(21): 5720-8, CrossRef.

Flynn JL, Chan J. Immunology of tuberculosis. Annu Rev Immunol. 2001; 19: 93-129, CrossRef.

Wehrli W. Rifampin: Mechanisms of action and resistance. Rev Infect Dis. 1983; 5 Suppl 3: S407-11, CrossRef.

Gräb J, Rybniker J. The expanding role of p38 mitogen-activated protein kinase in programmed host cell death. Microbiol Insights. 2019; 12: 1178636119864594, CrossRef.

Arthur JS, Ley SC. Mitogen-activated protein kinases in innate immunity. Nat Rev Immunol. 2013; 13(9): 679-92, CrossRef.

Hölscher C, Gräb J, Hölscher A, Müller AL, Schäfer SC, Rybniker J. Chemical p38 MAP kinase inhibition constrains tissue inflammation and improves antibiotic activity in Mycobacterium tuberculosis-infected mice. Sci Rep. 2020; 10(1): 13629, CrossRef.

Lin AE, Beasley FC, Olson J, Keller N, Shalwitz RA, Hannan TJ, et al. Role of hypoxia inducible factor-1α (HIF-1α) in innate defense against uropathogenic Escherichia coli infection. PLoS Pathog. 2015; 11(4): e1004818, CrossRef.

Martineau AR, Timms PM, Bothamley GH, Hanifa Y, Islam K, Claxton AP, et al. High-dose vitamin D(3) during intensive-phase antimicrobial treatment of pulmonary tuberculosis: A double-blind randomised controlled trial. Lancet. 2011; 377(9761): 242-50, CrossRef.

Wu YJ, Yang X, Wang XX, Qiu MT, You YZ, Zhang ZX, et al. Association of vitamin D receptor BsmI gene polymorphism with risk of tuberculosis: A meta-analysis of 15 studies. PLoS One. 2013; 8(6): e66944, CrossRef.

Kearns MD, Tangpricha V. The role of vitamin D in tuberculosis. J Clin Transl Endocrinol. 2014; 1(4): 167-9, CrossRef.

Kisich KO, Heifets L, Higgins M, Diamond G. Antimycobacterial agent based on mRNA encoding human beta-defensin 2 enables primary macrophages to restrict growth of Mycobacterium tuberculosis. Infect Immun. 2001; 69(4): 2692-9, CrossRef.

Rivas-Santiago B, Schwander SK, Sarabia C, Diamond G, Klein-Patel ME, Hernandez-Pando R, et al. Human β-defensin 2 is expressed and associated with Mycobacterium tuberculosis during infection of human alveolar epithelial cells. Infect Immun. 2005; 73(8): 4505-11, CrossRef.

Fraisl P, Aragonés J, Carmeliet P. Inhibition of oxygen sensors as a therapeutic strategy for ischaemic and inflammatory disease. Nat Rev Drug Discov. 2009; 8(2): 139-52, CrossRef.

Flagg SC, Martin CB, Taabazuing CY, Holmes BE, Knapp MJ. Screening chelating inhibitors of HIF-prolyl hydroxylase domain 2 (PHD2) and factor inhibiting HIF (FIH). J Inorg Biochem. 2012; 113: 25-30, CrossRef.

Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006; 311(5768): 1770-3, CrossRef.

Kelly CJ, Glover LE, Campbell EL, Kominsky DJ, Ehrentraut SF, Bowers BE, et al. Fundamental role for HIF-1α in constitutive expression of human β defensin-1. Mucosal Immunol. 2013; 6(6): 1110-8, CrossRef.

Nickel D, Busch M, Mayer D, Hagemann B, Knoll V, Stenger S. Hypoxia triggers the expression of human β defensin 2 and antimicrobial activity against Mycobacterium tuberculosis in human macrophages. J Immunol. 2012; 188(8): 4001-7, CrossRef.

Hayek I, Schatz V, Bogdan C, Jantsch J, Lührmann A. Mechanisms controlling bacterial infection in myeloid cells under hypoxic conditions. Cell Mol Life Sci. 2021; 78(5): 1887-907, CrossRef.

Appelberg R, Moreira D, Barreira-Silva P, Borges M, Silva L, Dinis-Oliveira RJ, et al. The Warburg effect in mycobacterial granulomas is dependent on the recruitment and activation of macrophages by interferon-γ. Immunology. 2015; 145(4): 498-507, CrossRef.

Lawlor C, O'Connor G, O'Leary S, Gallagher PJ, Cryan SA, Keane J, et al. Treatment of Mycobacterium tuberculosis-infected macrophages with poly(lactic-co-glycolic acid) microparticles drives NFκB and autophagy dependent bacillary killing. PLoS One. 2016; 11(2): e0149167, CrossRef.

Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick AF, Goel G, et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature. 2013; 496(7444): 238-42, CrossRef.

Semba H, Takeda N, Isagawa T, Sugiura Y, Honda K, Wake M, et al. HIF-1α-PDK1 axis-induced active glycolysis plays an essential role in macrophage migratory capacity. Nat Commun. 2016; 7: 11635, CrossRef.


Copyright (c) 2024 Cell and BioPharmaceutical Institute

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexed by:



Cell and BioPharmaceutical Institute