Potential Anti-Senescence Effect of Extract from Andrographis paniculata Herbal Plant and Its Bioactive Compounds: A Systematic Review
Abstract
The rapid aging of the global population is a major worldwide issue because of the close relationship between age and the development of several diseases. Aging or senescence is among the most widely studied topics at the moment. However, no pharmaceuticals have been developed that claim to possess anti-senescence properties. Andrographis paniculata, is a medicinal plant found widely throughout tropical and subtropical Asia. This review aims to identify the potential anti- senescence effect of A. paniculata extract and its bioactive compounds. By following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, five databases were used and in vivo and in vitro studies were included in this review. A. paniculata extracts and their bioactive compounds exert anti-senescence properties through their anti-inflammatory and antioxidant properties. This herb and its compounds enhanced memory, cognitive function and behaviour in Alzheimer's disease. The extract also promoted cell cycle progression and proliferation in the skin. In addition, andrographolide exhibited anti-senescence effects in endothelial cells through the activation of PI3K/Akt/Nrf and PI3K/Akt/AP-1 pathways. A. paniculata along with its bioactive compounds including andrographolide and 14-deoxyandrographolide, may have the potential to be used as anti-senescence through anti-inflammatory and antioxidant properties. However, the specific markers to evaluate the senescence are necessary to be conducted. Any clinical trials should be done to establish these findings. Since in clinical settings this potential herbal may be used for long-life time, the safety profile and toxicity of A. paniculata should be considered.
Keywords: herbal plants, Andrographis paniculata, andrographolide, bioactive compounds, senescence
Full Text:
PDFReferences
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013; 153(6): 1194, CrossRef.
Inestrosa NC, Toledo EM. The role of wnt signaling in neuronal dysfunction in alzheimer’s disease. Mol Neurodegener. 2008; 3(1): 9, CrossRef.
Oliva CA, Rivera DS, Torres AK, Lindsay CB, Tapia-Rojas C, Bozinovic F, et al. Age-dependent behavioral and synaptic dysfunction impairment are improved with long-term andrographolide administration in long-lived female degus (Octodon degus). Int J Mol Sci. 2023; 24(2): 1105, CrossRef.
The Lancet Diabetes & Endocrinology. Opening the door to treating ageing as a disease. Lancet Diabetes Endocrinol. 2018; 6(8): 587, CrossRef.
Power H, Valtchev P, Dehghani F, Schindeler A. Strategies for senolytic drug discovery. Aging Cell. 2023; 22(10): e13948, CrossRef.
Islam MT, Tuday E, Allen S, Kim J, Trott DW, Holland WL, et al. Senolytic drugs, dasatinib and quercetin, attenuate adipose tissue inflammation, and ameliorate metabolic function in old age. Aging Cell. 2023; 22(2): e13767, CrossRef.
Nekoukar Z, Moghimi M, Salehifar E. A narrative review on adverse effects of dasatinib with a focus on pharmacotherapy of dasatinib-induced pulmonary toxicities. Blood Res. 2021; 56(4): 229-42, CrossRef.
Andres S, Pevny S, Ziegenhagen R, Bakhiya N, Schäfer B, Hirsch-Ernst KI, et al. Safety aspects of the use of quercetin as a dietary supplement. Mol Nutr Food Res. 2018; 62(1), CrossRef.
Hwang E, Park SY, Yin CS, Kim HT, Kim YM, Yi TH. Antiaging effects of the mixture of Panax ginseng and Crataegus pinnatifida in human dermal fibroblasts and healthy human skin. J Ginseng Res. 2017; 41(1): 69-77, CrossRef.
Nam YH, Jeong SY, Kim YH, Rodriguez I, Nuankaew W, Bhawal UK, et al. Anti-aging effects of korean red ginseng (KRG) in differentiated embryo chondrocyte (DEC) knockout mice. J Ginseng Res. 2021; 45(1): 183-90, CrossRef.
Zeng L, Sun C, Pei Z, Yun T, Fan S, Long S, et al. Liangyi gao extends lifespan and exerts an antiaging effect in caenorhabditis elegans by modulating DAF-16/FOXO. Biogerontology. 2019; 20(5): 665-76, CrossRef.
Shen C, Jiang J, Yang L, Wang D, Zhu W. Anti-ageing active ingredients from herbs and nutraceuticals used in traditional Chinese medicine: pharmacological mechanisms and implications for drug discovery. Br J Pharmacol. 2017; 174(11): 1395-425, CrossRef.
Cho SY, Lee HG, Kwon S, Park SU, Jung WS, Moon SK, et al. A systematic review of in vivo studies of the efficacy of herbal medicines for anti-aging in the last five years. Pharmaceuticals. 2023; 16(3): 448, CrossRef.
Krüth P, Brosi E, Fux R, Mörike K, Gleiter CH. Ginger-associated overanticoagulation by phenprocoumon. Annals of Pharmacotherapy. 2004; 38(2): 257-60, CrossRef.
Dai Y, Chen SR, Chai L, Zhao J, Wang Y, Wang Y. Overview of pharmacological activities of andrographis paniculata and its major compound andrographolide. Crit Rev Food Sci Nutr. 2019; 59: S17-S29, CrossRef.
Hossain MS, Urbi Z, Sule A, Rahman KMH. Andrographis paniculata (Burm. f.) wall. ex nees: A review of ethnobotany, phytochemistry, and pharmacology. Sci World J. 2014; 2014: 274905., CrossRef.
Kumar S, Singh B, Bajpai V. Andrographis paniculata (Burm.f.) nees: Traditional uses, phytochemistry, pharmacological properties and quality control/quality assurance. J Ethnopharmacol. 2021; 275: 114054, CrossRef.
Chao WW, Lin BF. Isolation and identification of bioactive compounds in Andrographis paniculata (Chuanxinlian). Chin Med. 2010; 5(1): 17, CrossRef.
Gupta S, Mishra KP, Kumar B, Singh SB, Ganju L. Andrographolide attenuates complete freund’s adjuvant induced arthritis via suppression of inflammatory mediators and pro-inflammatory cytokines. J Ethnopharmacol. 2020; 261: 113022, CrossRef.
Schett G, Zwerina J, Firestein G. The p38 mitogen-activated protein kinase (MAPK) pathway in rheumatoid arthritis. Ann Rheum Dis. 2008; 67(7): 909-16, CrossRef.
Woods JM, Mogollon A, Amin MA, Martinez RJ, Koch AE. The role of COX-2 in angiogenesis and rheumatoid arthritis. Exp Mol Pathol. 2003; 74(3): 282-90, CrossRef.
Makarov SS. NF-kappa B in rheumatoid arthritis: a pivotal regulator of inflammation, hyperplasia, and tissue destruction. Arthritis Res. 2001; 3(4): 200, CrossRef.
Serrano FG, Tapia-Rojas C, Carvajal FJ, Hancke J, Cerpa W, Inestrosa NC. Andrographolide reduces cognitive impairment in young and mature AβPPswe/PS-1 mice. Mol Neurodegener. 2014; 9: 61, CrossRef.
Varela-Nallar L, Arredondo SB, Tapia-Rojas C, Hancke J, Inestrosa NC. Andrographolide stimulates neurogenesis in the adult hippocampus. Neural Plast. 2015; 2015: 935403, CrossRef.
Inestrosa NC, Tapia-Rojas C, Lindsay CB, Zolezzi JM. Wnt signaling pathway dysregulation in the aging brain: Lessons from the Octodon degus. Front Cell Dev Biol. 2020; 8: 734, CrossRef.
Cisternas P, Vio CP, Inestrosa NC. Role of wnt signaling in tissue fibrosis, lessons from skeletal suscle and kidney. Curr Mol Med. 2014; 14(4): 510-22, CrossRef.
Fuenzalida M, Espinoza C, Pérez MÁ, Tapia-Rojas C, Cuitino L, Brandan E, et al. Wnt signaling pathway improves central inhibitory synaptic transmission in a mouse model of duchenne muscular dystrophy. Neurobiol Dis. 2016; 86: 109-20, CrossRef.
Gammons M, Bienz M. Multiprotein complexes governing wnt signal transduction. Curr Opin Cell Biol. 2018; 51: 42-9, CrossRef.
Caricasole A, Copani A, Caraci F, et al. Induction of Dickkopf-1, a negative modulator of the wnt pathway, is associated with neuronal degeneration in alzheimer’s brain. J Neurosci Res. 2004; 24(26): 6021-7, CrossRef.
García-Velázquez L, Arias C. The emerging role of wnt signaling dysregulation in the understanding and modification of age-associated diseases. Ageing Res Rev. 2017; 37: 135-45, CrossRef.
Tapia-Rojas C, Schüller A, Lindsay CB, Ureta RC, Mejías-Reyes C, Hancke J, et al. Andrographolide activates the canonical Wnt signalling pathway by a mechanism that implicates the non-ATP competitive inhibition of GSK-3β: autoregulation of GSK-3β in vivo. Biochem J. 2015; 466(2): 415-30, CrossRef.
Chang CC, Duann YF, Yen TL, Chen YY, Jayakumar T, Ong ET, et al. Andrographolide, a novel NF-κB inhibitor, inhibits vascular smooth muscle cell proliferation and cerebral endothelial cell inflammation. Acta Cardiol Sin. 2014; 30(4): 308-15, article.
Lindsay CB, Zolezzi JM, Rivera DS, Cisternas P, Bozinovic F, Inestrosa NC. Andrographolide reduces neuroinflammation and oxidative stress in aged Octodon degus. Mol Neurobiol. 2020; 57(2): 1131-45, CrossRef.
Rivera DS, Lindsay C, Codocedo JF, Morel I, Pinto C, Cisternas P, et al. Andrographolide recovers cognitive impairment in a natural model of Alzheimer’s disease (Octodon degus). Neurobiol Aging. 2016; 46: 204-20, CrossRef.
You J, Roh KB, Li Z, Liu G, Tang J, Shin S, Park D, et al. The antiaging properties of Andrographis paniculata by activation epidermal cell stemness. Molecules. 2015; 20(9): 17557-69, CrossRef.
Senger DR, Perruzzi CA, Streit M, Koteliansky VE, de Fougerolles AR, Detmar M. The α1β1 and α2β1 integrins provide critical support for vascular endothelial growth factor signaling, endothelial cell migration, and tumor angiogenesis. Am J Pathol. 2002; 160(1): 195-204, CrossRef.
Traversa B, Sussman G. The role of growth factors, cytokines and proteases in wound management. J Wound Manag Res. 2001; 9(4): 161-7, article.
Mussard E, Jousselin S, Cesaro A, Legrain B, Lespessailles E, Esteve E, et al. Andrographis paniculata and its bioactive diterpenoids against inflammation and oxidative stress in keratinocytes. Antioxidants. 2020; 9(6): 530, CrossRef.
Mussard E, Jousselin S, Cesaro A, Legrain B, Lespessailles E, Esteve E, et al. Andrographis paniculata and Its Bioactive Diterpenoids Protect Dermal Fibroblasts against Inflammation and Oxidative Stress. Antioxidants. 2020; 9(5): 432, CrossRef.
Wang ML, Zhong QY, Lin BQ, Liu YH, Huang YF, Chen Y, et al. Andrographolide sodium bisulfate attenuates UV induced photo damage by activating the keap1/Nrf2 pathway and downregulating the NF κB pathway in HaCaT keratinocytes. Int J Mol Med. 2019; 45(2): 343-52, CrossRef.
Lu CY, Yang YC, Li CC, Liu KL, Lii CK, Chen HW. Andrographolide inhibits TNFα-induced ICAM-1 expression via suppression of NADPH oxidase activation and induction of HO-1 and GCLM expression through the PI3K/Akt/Nrf2 and PI3K/Akt/AP-1 pathways in human endothelial cells. Biochem Pharmacol. 2014; 91(1): 40-50, CrossRef.
Worasuttayangkurn L, Nakareangrit W, Kwangjai J, Sritangos P, Pholphana N, Watcharasit P, et al. Acute oral toxicity evaluation of Andrographis paniculata-standardized first true leaf ethanolic extract. Toxicol Rep. 2019; 6: 426-30, CrossRef.
Eugine LPS, Manavalan R. Acute toxicity studies of andrographolide. Res J Pharm Biol Chem Sci. 2011; 2(3): 547-52, article.
Bothiraja C, Pawar AP, Shende VS, Joshi PP. Acute and subacute toxicity study of andrographolide bioactive in rodents: Evidence for the medicinal use as an alternative medicine. Comp Clin Path. 2013; 22(6): 1123-8, CrossRef.
Murugan SK, Bethapudi B, Rao AN, Allan JJ, Mundkinajeddu D, D'Souza P. Toxicological safety assessment of AP-Bio®, a standardized extract of andrographis paniculata in Sprague Dawley rats. J Appl Toxicol. 2023; 43(11): 1630-44, CrossRef.
Levita J. Bioavailability study of sambiloto (Andrographis paniculata) herbs infusion in rabbit. Indonesian J. Pharm. 2014; 25(3): 138, CrossRef.
Chellampillai B, Pawar AP. Improved bioavailability of orally administered andrographolide from pH-sensitive nanoparticles. Eur J Drug Metab Pharmacokinet. 2011; 35(3-4): 123-9, CrossRef.
Hurley MJ, Deacon RMJ, Beyer K, Ioannou E, Ibáñez A, Teeling JL, et al. The long-lived Octodon degus as a rodent drug discovery model for alzheimer’s and other age-related diseases. Pharmacol Ther. 2018; 188: 36-44, CrossRef.
Cuenca-Bermejo L, Pizzichini E, Gonzalez-Cuello AM, De Stefano ME, Fernandez-Villalba E, Herrero MT. Octodon degus: A natural model of multimorbidity for ageing research. Ageing Res Rev. 2020; 64: 101204, CrossRef.
Bryant CD. The blessings and curses of C57BL/6 substrains in mouse genetic studies. Ann N Y Acad Sci. 2011; 1245(1): 31-3, CrossRef.
Hamieh AM, Camperos E, Hernier AM, Castagné V. C57BL/6 mice as a preclinical model to study age-related cognitive deficits: Executive functions impairment and inter-individual differences. Brain Res. 2021; 1751: 147173, CrossRef.
Liu Y, Zhang Z, Li T, Xu H, Zhang H. Senescence in osteoarthritis: from mechanism to potential treatment. Arthritis Res Ther. 2022; 24(1): 174, CrossRef.
Hunter DJ, Bierma-Zeinstra S. Osteoarthritis. Lancet. 2019; 393(10182): 1745-59, CrossRef.
Martin JA, Brown TD, Heiner AD, Buckwalter JA. Chondrocyte senescence, joint loading and osteoarthritis. Clin Orthop Relat Res. 2004; 427: S96-103, CrossRef.
Childs BG, Durik M, Baker DJ, van Deursen JM. Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med. 2015; 21(12): 1424-35, CrossRef.
Orjalo AV, Bhaumik D, Gengler BK, Scott GK, Campisi J. Cell surface-bound IL-1alpha is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine network. Proc Natl Acad Sci USA. 2009; 106(40): 17031-6, CrossRef.
Iruretagoyena MI, Tobar JA, González PA, Sepúlveda SE, Figueroa CA, et al. Andrographolide interferes with T cell activation and reduces experimental autoimmune encephalomyelitis in the mouse. J Pharmacol Exp Ther. 2005; 312(1): 366-72, CrossRef.
Hidalgo MA, Romero A, Figueroa J, Cortés P, Concha II, Hancke JL, et al. Andrographolide interferes with binding of nuclear factor-kappaB to DNA in HL-60-derived neutrophilic cells. Br J Pharmacol. 2005; 144(5): 680-6, CrossRef.
Heneka MT, O'Banion MK. Inflammatory processes in Alzheimer's disease. J Neuroimmunol. 2007; 184(1-2): 69-91, CrossRef.
Pike CJ, Cummings BJ, Cotman CW. Early association of reactive astrocytes with senile plaques in Alzheimer’s disease. Exp Neurol. 1995; 132(2): 172-9, CrossRef.
Smith MA, Perry G, Richey PL, Sayre LM, Anderson VE, Beal MF, et al. Oxidative damage in Alzheimer's. Nature. 1996; 382(6587): 120-1, CrossRef.
Mercken M, Vandermeeren M, Lübke U, Six J, Boons J, Van de Voorde A, et al. Monoclonal antibodies with selective specificity for Alzheimer Tau are directed against phosphatase-sensitive epitopes. Acta Neuropathol. 1992; 84(3): 265-72, CrossRef.
Miranda S, Opazo C, Larrondo LF, Muñoz FJ, Ruiz F, Leighton F, et al. The role of oxidative stress in the toxicity induced by amyloid beta-peptide in Alzheimer's disease. Prog Neurobiol. 2000; 62(6): 633-48, CrossRef.
Quintanilla RA, Muñoz FJ, Metcalfe MJ, Hitschfeld M, Olivares G, Godoy JA, et al. Trolox and 17beta-estradiol protect against amyloid beta-peptide neurotoxicity by a mechanism that involves modulation of the Wnt signaling pathway. J Biol Chem. 2005; 280(12): 11615-25, CrossRef.
Dumont M, Beal MF. Neuroprotective strategies involving ROS in Alzheimer disease. Free Radic Biol Med. 2011; 51(5): 1014-26, CrossRef.
Winner B, Kohl Z, Gage FH. Neurodegenerative disease and adult neurogenesis. Eur J Neurosci. 2011; 33(6): 1139-51, CrossRef.
Varela-Nallar L, Aranguiz FC, Abbott AC, Slater PG, Inestrosa NC. Adult hippocampal neurogenesis in aging and Alzheimer's disease. Birth Defects Res C Embryo Today. 2010; 90(4): 284-96, CrossRef.
Kuhn HG, Dickinson-Anson H, Gage FH. Neurogenesis in the dentate gyrus of the adult rat: Age-related decrease of neuronal progenitor proliferation. J Neurosci. 1996; 16(6): 2027-33, CrossRef.
Gould E, Vail N, Wagers M, Gross CG. Adult-generated hippocampal and neocortical neurons in macaques have a transient existence. Proc Natl Acad Sci USA. 2001; 98(19): 10910-7, CrossRef.
Tapia-Rojas C, Schüller A, Lindsay CB, Ureta RC, Mejías-Reyes C, Hancke J, et al. Andrographolide activates the canonical Wnt signalling pathway by a mechanism that implicates the non-ATP competitive inhibition of GSK-3β: Autoregulation of GSK-3β in vivo. Biochem J. 2015; 466(2): 415-30, CrossRef.
Lie DC, Colamarino SA, Song HJ, Désiré L, Mira H, Consiglio A, et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature. 2005; 437(7063): 1370-5, CrossRef.
Jang MH, Bonaguidi MA, Kitabatake Y, Sun J, Song J, Kang E, et al. Secreted frizzled-related protein 3 regulates activity-dependent adult hippocampal neurogenesis. Cell Stem Cell. 2013; 12(2): 215-23, CrossRef.
Seib DR, Corsini NS, Ellwanger K, Plaas C, Mateos A, Pitzer C, et al. Loss of dickkopf-1 restores neurogenesis in old age and counteracts cognitive decline. Cell Stem Cell. 2013; 12(2): 204-14, CrossRef.
Kuwabara T, Hsieh J, Muotri A, Yeo G, Warashina M, Lie DC, et al. Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis. Nat Neurosci. 2009; 12(9):1097-105, CrossRef.
Wexler EM, Geschwind DH, Palmer TD. Lithium regulates adult hippocampal progenitor development through canonical Wnt pathway activation. Mol Psychiatry. 2008; 13(3): 285-92, CrossRef.
Kayastha F, Madhu H, Vasavada A, Johar K. Andrographolide reduces proliferation and migration of lens epithelial cells by modulating PI3K/Akt pathway. Exp Eye Res. 2014; 128: 23-6, CrossRef.
Kumar S, Patil HS, Sharma P, Kumar D, Dasari S, Puranik VG, Thulasiram HV, Kundu GC. Andrographolide inhibits osteopontin expression and breast tumor growth through down regulation of PI3 kinase/Akt signaling pathway. Curr Mol Med. 2012; 12(8): 952-66, CrossRef.
Colombres M, Sagal J, Inestrosa N. An overview of the current and novel drugs for alzheimers disease with particular reference to anti-cholinesterase compounds. Curr Pharm Des. 2004; 10(25): 3121-30, CrossRef.
Silvestrelli G, Lanari A, Parnetti L, Tomassoni D, Amenta F. Treatment of alzheimer’s disease: From pharmacology to a better understanding of disease pathophysiology. Mech Ageing Dev. 2006; 127(2): 148-57, CrossRef.
Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in alzheimer disease. Cold Spring Harb Perspect Med. 2011; 1(1): a006189, CrossRef.
Brosseron F, Krauthausen M, Kummer M, Heneka MT. Body fluid cytokine levels in mild cognitive impairment and alzheimer’s disease: A comparative overview. Mol Neurobiol. 2014; 50(2): 534-44, CrossRef.
Arrázola MS, Silva-Alvarez C, Inestrosa NC. How the wnt signaling pathway protects from neurodegeneration: The mitochondrial scenario. Front Cell Neurosci. 2015; 9, CrossRef.
Zhao Y, Zhao B. Oxidative stress and the pathogenesis of alzheimer’s disease. Oxid Med Cell Longev. 2013; 2013: 1-10, CrossRef.
Fuentealba RA, Farias G, Scheu J, Bronfman M, Marzolo MP, Inestrosa NC. Signal transduction during amyloid-β-peptide neurotoxicity: Role in alzheimer disease. Brain Res Rev. 2004; 47(1-3): 275-89, CrossRef.
Cerpa W, Dinamarca MC, Inestrosa NC. Structure-function implications in alzheimer's disease: Effect of abeta oligomers at central synapses. Curr Alzheimer Res. 2008; 5(3): 233-43, CrossRef.
McDonald CL, Hennessy E, Rubio-Araiz A, Keogh B, McCormack W, McGuirk P, et al. Inhibiting TLR2 activation attenuates amyloid accumulation and glial activation in a mouse model of alzheimer's disease. Brain Behav Immun. 2016; 58: 191-200, CrossRef.
Bolin LM, Zhaung A, Strychkarska-Orczyk I, Nelson E, Huang I, Malit M, Nguyen Q. Differential inflammatory activation of IL-6 (-/-) astrocytes. Cytokine. 2005; 30(2): 47-55, CrossRef.
Zhou X, Li J, Yang W. Calcium/calmodulin-dependent protein kinase II regulates cyclooxygenase-2 expression and prostaglandin E2 production by activating cAMP-response element-binding protein in rat peritoneal macrophages. Immunology. 2014; 143(2): 287-99, CrossRef.
Oliva CA, Rivera DS, Mariqueo TA, Bozinovic F, Inestrosa NC. Differential role of sex and age in the synaptic transmission of degus (Octodon degus). Front Integr Neurosci. 2022; 16, CrossRef.
Colonnello V, Iacobucci P, Fuchs T, Newberry RC, Panksepp J. Octodon degus. A useful animal model for social-affective neuroscience research: Basic description of separation distress, social attachments and play. Neurosci Biobehav Rev. 2011; 35(9):1854-63, CrossRef.
Girsang E, Lister INE, Ginting CN, Bethasari M, Amalia A, Widowati W. Comparison of antiaging and antioxidant activities of protocatechuic and ferulic acids. Mol and Cell Biomed Sci. 2020; 4(2): 68, CrossRef.
Valentina I, Achadiyani A, Adi SS, Lesmana R, Farenia R. Effect of Lactobacillus reuteri administration on wrinkle formation and type I procollagen levels in UVB-exposed male balb/c mice (Mus musculus). Mol and Cell Biomed Sci. 2020; 4(3): 113, CrossRef.
Jundan SF, Amalia R, Sartika CR. Mesenchymal stem cell in 3D culture: Diminishing cell senescence in cryopreservation and long-term expansion. Mol and Cell Biomed Sci. 2023; 7(3): 133, CrossRef.
González-Gualda E, Baker AG, Fruk L, Muñoz-Espín D. A guide to assessing cellular senescence in vitro and in vivo. FEBS J. 2021; 288(1): 56-80, CrossRef.
Makovski TT, Schmitz S, Zeegers MP, Stranges S, van den Akker M. Multimorbidity and quality of life: Systematic literature review and meta-analysis. Ageing Res Rev. 2019; 53: 100903, CrossRef.
Zhang L, Pitcher LE, Yousefzadeh MJ, Niedernhofer LJ, Robbins PD, Zhu Y. Cellular senescence: a key therapeutic target in aging and diseases. J Clin Invest. 2022; 132(15): e158450, CrossRef.
Shimizu I, Minamino T. Cellular senescence in cardiac diseases. J Cardiol. 2019; 74(4): 313-9, CrossRef.
Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL. Cellular senescence and the senescent secretory phenotype: Therapeutic opportunities. J Clin Invest. 2013; 123(3): 966-72, CrossRef.
DOI: https://doi.org/10.21705/mcbs.v8i3.432
Copyright (c) 2024 Cell and BioPharmaceutical Institute

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Indexed by:
Cell and BioPharmaceutical Institute