In silico Investigation on Clopidogrel, Prasugrel and Ticagrelor as Potential Mono Antiplatelet Therapy for Acute Coronary Syndrome
Abstract
Background: In acute coronary syndrome (ACS), antiplatelet therapy is crucial for inhibiting platelet aggregation. Dual antiplatelet therapy (DAPT) commonly employs aspirin along with clopidogrel, prasugrel, or ticagrelor. This is well known that aspirin acts as a cyclooxygenase (COX)-1 inhibitor, while clopidogrel, prasugrel, and ticagrelor act as P2Y12 inhibitors. Despite DAPT's proven efficacy in more effectively reducing cardiovascular events in ACS patients, this is associated with an increased risk of bleeding compared to mono antiplatelet therapy (MAPT). To minimize the cost and side effect that might arise from the use of DAPT, this is necessary to assess the potential of MAPT using a P2Y12 inhibitor drug, to understand whether they are capable of binding to both COX-1 and P2Y12. Hence, this study was conducted to identify P2Y12 inhibitor drugs that have the ability to bind to COX-1, allowing them to be proposed as MAPT.
Materials and methods: Molecular docking was employed to assess binding affinity, interaction types, amino acid residues, binding distances, and visualizations in both 3D and 2D formats. The applications utilized were BIOVIA Discovery Studio and AutoDock, while the websites utilized were research collaboratory for structural bioinformatics protein data bank (RCSB PDB) and PubChem.
Results: In silico findings reveal differences in binding strength among clopidogrel, prasugrel, and ticagrelor to COX-1 and P2Y12, with ticagrelor emerging as the stronger ligand due to a higher number of bindings and/or closer binding distances. Notably, only prasugrel and ticagrelor demonstrate the ability to bind to the active site of COX-1.
Conclusion: Therefore, prasugrel and ticagrelor emerge as potential MAPT agents for ACS patients.
Keywords: clopidogrel, prasugrel, ticagrelor, antiplatelet, ACS, in silico, molecular docking
References
Shahjehan RD, Bhutta BS. Coronary Artery Disease. Tampa: StatPearls Publishing; 2024, article.
Lukito AA, Bakri S, Kabo P, Wijaya A. The mechanism of coronary artery calcification in centrally obese non-diabetic men: Study on the interaction of leptin, free leptin index, adiponectin, hs-C reactive protein, bone morphogenetic protein-2 and matrix gla protein. Mol Cell Biomed Sci. 2020; 4(2): 88-93, CrossRef.
Brown JS, Amend SR, Austin RH, Gatenby RA, Hammarlund EU, Pienta KJ. Updating the definition of cancer. Mol Cancer Res. 2023; 21(11): 1142-47, CrossRef.
Morrow DA. Cardiovascular risk prediction in patients with stable and unstable coronary heart disease. Circulation. 2010; 121(24): 2681-91, CrossRef.
Santos IS, Goulart AC, Brandão RM, Santos RC, Bittencourt MS, Sitnik D, et al. One-year mortality after an acute coronary event and its clinical predictors: The ERICO Study. Arq Bras Cardiol. 2015; 105(1): 53-64, CrossRef.
Abubakar M, Raza S, Hassan KM, Javed I, Hassan KM, Farrukh F, et al. Efficacy, safety, and role of antiplatelet drugs in the management of acute coronary syndrome: A comprehensive review of literature. Cureus. 2023; 15(3): e36335, CrossRef.
Kornfeld M, Munsayac JR. Antiplatelet medications. In: Scott AF, Saint S, editors. Inpatient Anticoagulation. Hoboken: John Wiley & Sons; 2011. p.47-65, CrossRef.
Damman P, Woudstra P, Kuijt WJ, de Winter RJ, James SK. P2Y12 platelet inhibition in clinical practice. J Thromb Thrombolysis. 2012; 33(2): 143-53, CrossRef.
Kang J, Park KW, Lee H, Hwang D, Yang HM, Rha SW, et al. Aspirin versus clopidogrel for long-term maintenance monotherapy after percutaneous coronary intervention: The HOST-EXAM extended study. Circulation. 2023; 147(2): 108-17, CrossRef.
Sudlow CLM, Mason G, Maurice JB, Wedderburn CJ, Hankey GJ. Thienopyridine derivatives versus aspirin for preventing stroke and other serious vascular events in high vascular risk patients. Cochrane Database Syst Rev. 2009; 2009(4): CD001246, CrossRef.
Özkan K, Mehdi K, Kobat MA, Tarık K. Kivrak T. Dapt review. J Cardiol Cardiovasc Med. 2020; 5: 060-6, CrossRef.
Brown DL, Levine DA, Albright K, Kapral MK, Leung LY, Reeves MJ, et al. Benefits and risks of dual versus single antiplatelet therapy for secondary stroke prevention: A systematic review for the 2021 guideline for the prevention of stroke in patients with stroke and transient ischemic attack. Stroke. 2021; 52(7): e468-79, CrossRef.
Wallentin L, Becker RC, Budaj A, Cannon CP, Emanuelsson H, Held C, et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2009; 361(11): 1045-57, CrossRef.
Wiviott SD, Braunwald E, Mccabe CH, Montalescot G, Ruzyllo W, Gottlieb S, et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2007; 357(20): 2001-15, CrossRef.
Anggraini G, Hayun H, Jatmika C. Sintesis dan uji aktivitas anti-inflamasi senyawa 2-hidroksi-N-(piridin-2-il)benzamida tersubstitusi basa mannich morfolin dan N-metilpiperazin. J Penelit Pendidik IPA. 2023; 9(1): 1-8, CrossRef.
Smith WL, DeWitt DL, Garavito RM. Cyclooxygenases: Structural, cellular, and molecular biology. Annu Rev Biochem. 2000; 69: 145-82, CrossRef.
Devhare PR, Jain S, Sonwane G, Borkar V, Diwre R. Identification and optimization of binding site for an active metabolite of clopidogrel, prasugrel and ticlopidine on receptor P2Y12. Int J Pharm Sci Res. 2021; 12(8): 4365-70, article.
Noviardi H. Potensi senyawa bullatalisin sebagai inhibitor protein leukotrien A4 hidrolase pada kanker kolon secara in silico. Fitofarmaka J Ilm Farm. 2015; 5(2): 65-73, CrossRef.
Brandsdal BO, Österberg F, Almlöf M, Feierberg I, Luzhkov VB, Åqvist J. Free energy calculations and ligand binding. Adv Protein Chem. 2003; 66: 123-58, CrossRef.
Ekawasti F, Sa'diah S, Cahyaningsih U, Dharmayanti NLPI, Subekti DT. Molecular docking senyawa jahe merah dan kunyit pada dense granules protein-1 Toxoplasma gondii dengan metode in silico. J Vet. 2021; 22(4): 474-84, CrossRef.
Wardaniati I, Herli MA. Studi molecular docking senyawa golongan falvonol sebagai antibakteri. J Pharm Sci. 2018; 1(2): 20-7, CrossRef.
Arwansyah A, Ambarsari L, Sumaryada TI. Simulasi docking senyawa kurkumin dan analognya sebagai inhibitor reseptor androgen pada kanker prostat. Curr Biochem. 2014; 1(1): 11-9, CrossRef.
Du X, Li Y, Xia YL, Ai SM, Liang J, Sang P, et al. Insights into protein-ligand interactions: Mechanisms, models, and methods. Int J Mol Sci. 2016; 17(2): 144, CrossRef.
Frimayanti N, Lukman A, Nathania L. Studi molecular docking senyawa 1,5-benzothiazepine sebagai inhibitor dengue DEN-2 NS2B/NS3 serine protease. Chempublish J. 2021; 6(1): 54-62, CrossRef.
Li J, Fu A, Zhang L. An overview of scoring functions used for protein-ligand interactions in molecular docking. Interdiscip Sci. 2019; 11(2): 320-28, CrossRef.
Tallei TE, Tumilaar SG, Niode NJ, Fatimawali, Kepel BJ, Idroes R, et al. Potential of plant bioactive compounds as SARS-CoV-2 main protease (Mpro) and spike (S) glycoprotein inhibitors: A molecular docking study. Scientifica. 2020; 2020: 6307457, CrossRef.
Gierse JK, McDonald JJ, Hauser SD, Rangwala SH, Koboldt CM, Seibert K. A single amino acid difference between cyclooxygenase-1 (COX-1) and -2 (COX-2) reverses the selectivity of COX-2 specific inhibitors. J Biol Chem. 1996; 271(26): 15810-4, CrossRef.
Vecchio AJ, Orlando BJ, Nandagiri R, Malkowski MG. Investigating substrate promiscuity in cyclooxygenase-2: The role of Arg-120 and residues lining the hydrophobic groove. J Biol Chem. 2012; 287(29): 24619-30, CrossRef.
Warner TD, Nylander S, Whatling C. Anti-platelet therapy: cyclo-oxygenase inhibition and the use of aspirin with particular regard to dual anti-platelet therapy. Br J Clin Pharmacol. 2011; 72(4): 619-33, CrossRef.
Tomić M, Micov A, Pecikoza U, Stepanović-Petrović RM. Clinical uses of nonsteroidal anti-inflammatory drugs (NSAIDs) and potential benefits of NSAIDs modified-release preparations. In: Čalija B, editor. Microsized and Nanosized Carriers for Nonsteroidal Anti-Inflammatory Drugs: Formulation Challenges and Potential Benefits. Cambridge: Academic Press. 2017. p.1-29, CrossRef.
Ballerini P, Dovizio M, Bruno A, Tacconelli S, Patrignani P. P2Y12 receptors in tumorigenesis and metastasis. Front Pharmacol. 2018; 9: 66, CrossRef.
Lei J, Zhou Y, Xie D, Zhang Y. Mechanistic insights into a classic wonder drug--aspirin. J Am Chem Soc. 2015; 137(1): 70-3, CrossRef.
Gimenez-Bastida JA, Boeglin WE, Boutaud O, Malkowski MG, Schneider C. Residual cyclooxygenase activity of aspirin-acetylated COX-2 forms 15R-prostaglandins that inhibit platelet aggregation. FASEB J. 2019; 33(1): 1033-41, CrossRef.
Marjan MN, Hamzeh MT, Rahman E, Sadeq V. A computational prospect to aspirin side effects: aspirin and COX-1 interaction analysis based on non-synonymous SNPs. Comput Biol Chem. 2014; 51: 57-62, CrossRef.
Driver B, Marks DC, van der Wal DE. Not all (N)SAID and done: Effects of nonsteroidal anti-inflammatory drugs and paracetamol intake on platelets. Res Pract Thromb Haemost. 2019; 4(1): 36-45, CrossRef.
Rao GHR, Johnson GG, Reddy KR, White JG. Ibuprofen protects platelet cyclooxygenase from irreversible inhibition by aspirin. Arteriosclerosis. 1983; 3(4): 383-8, CrossRef.
Shibata K, Akagi Y, Nozawa N, Shimomura H, Aoyama T. Influence of nonsteroidal anti-inflammatory drugs on aspirin's antiplatelet effects and suggestion of the most suitable time for administration of both agents without resulting in interaction. J Pharm Heal Care Sci. 2017; 3: 9, CrossRef.
DOI: https://doi.org/10.21705/mcbs.v8i3.464
Copyright (c) 2024 Cell and BioPharmaceutical Institute
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Indexed by:
Cell and BioPharmaceutical Institute