The Role of Centella asiatica and Its Main Bioactive Compound, Asiatic Acid in Cardiac Remodeling: A Systematic Review of Animal Studies

Muhamad Rizqy Fadhillah, Wawaimuli Arozal, Heri Wibowo, Arleni Bustami, Suci Widya Primadhani, Nurul Gusti Khatimah, Rizky Clarinta Putri, Clara Riski Amanda, Nur Azizah

Abstract


Cardiac remodeling is a phenotype of heart failure characterized by a molecular, cellular, and interstitial change in the heart, which manifests in the change of size and function of the heart after specific insults with multiple mechanisms. Centella asiatica (CA) and its main bioactive triterpenoid, asiatic acid (AA), pose antioxidant and anti-inflammatory effects. Still, no adequate clinical trials support the potency of CA and AA as anti-cardiac remodeling. Hence, this systematic review aims to provide an in-depth analysis of CA extract and AA in animal studies' prevention or therapy of cardiac remodeling. The search strategies were conducted based on preferred reporting Items for systematic reviews and meta-analysis (PRISMA) protocol through Pubmed, EMBASE, Scopus, and Web of Science using keywords as follows: “Centella asiatica” OR “Asiatic Acid” AND “Cardiac Remodeling” OR “Cardiac Hypertrophy” OR “Cardiac Fibrosis” along with their synonym. The data collected included hemodynamic parameters based on echocardiography, biomolecular tests such as quantitative polymerase chain reaction (qPCR), Western blotting, or biochemistry procedures. The paper quality was assessed using Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE) risk of bias (RoB). The previous selected study has shown that CA and AA might prevent and cure cardiac remodeling by inhibiting various pathways and protein expressions through AMPKα, NOX2/4, PI3K/Akt/mTOR, p70S6K, YAP/TAZ, and IL-1β, IL-6, and IL-18 cytokines. CA and AA, thus, exhibit cardioprotective effects in the animal model, which need to be confirmed in the clinical trials on humans. 

Keywords: cardiac remodeling, cardiac hypertrophy, cardiac fibrosis, Centella asiatica, asiatic acid


Full Text:

PDF

References


Savarese G, Becher PM, Lund LH, Seferovic P, Rosano GMC, Coats AJS. Global burden of heart failure: A comprehensive and updated review of epidemiology. Cardiovasc Res. 2023; 118 (17): 3272-87, CrossRef.

Nakamura M, Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol. 2018; 15(7): 387-407, CrossRef.

Oudit GY, Crackower MA, Eriksson U, Sarao R, Kozieradzki I, Sasaki T, et al. Phosphoinositide 3-kinase γ-deficient mice are protected from isoproterenol-induced heart failure. Circulation. 2003; 108(17): 2147-52, CrossRef.

Oudit GY, Sun H, Kerfant BG, Crackower MA, Penninger JM, Backx PH. The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease. J Mol Cell Cardiol. 2004; 37(2): 449-71, CrossRef.

Zhao QD, Viswanadhapalli S, Williams P, Shi Q, Tan C, Yi X, et al. NADPH oxidase 4 induces cardiac fibrosis and hypertrophy through activating Akt/mTOR and NFκB signaling pathways. Circulation 2015; 131(7): 643-55, CrossRef.

Gordon JW, Shaw JA, Kirshenbaum LA. Multiple facets of NF-κB in the heart: To be or not to NF-κB. Circ Res. 2011; 108(9): 1122-32, CrossRef.

Yan R, Sun Y, Yang Y, Zhang R, Jiang Y, Meng Y. Mitochondria and NLRP3 inflammasome in cardiac hypertrophy. Mol Cell Biochem. 2024; 479(7): 1571-82, CrossRef.

Pinar AA, Scott TE, Huuskes BM, Tapia Cáceres FE, Kemp-Harper BK, et al. Targeting the NLRP3 inflammasome to treat cardiovascular fibrosis. Pharmacol Ther. 2020; 209: 107511, CrossRef.

Feng D, Guo L, Liu J, Song Y, Ma X, Hu H, et al. DDX3X deficiency alleviates LPS-induced H9c2 cardiomyocytes pyroptosis by suppressing activation of NLRP3 inflammasome. Exp Ther Med. 2021; 22(6): 1389. doi: 10.3892/etm.2021.10825, CrossRef.

Lim S, Lee ME, Jeong J, Lee J, Cho S, Seo M, et al. sRAGE attenuates angiotensin II-induced cardiomyocyte hypertrophy by inhibiting RAGE-NFκB-NLRP3 activation. Inflamm Res. 2018; 67(8): 691-701, CrossRef.

McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021; 42(36): 3599-26, CrossRef.

Nagueh SF. Heart failure with preserved ejection fraction: Insights into diagnosis and pathophysiology. Cardiovasc Res. 2021; 117(4): 999-1014, CrossRef.

McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2023 focused update of the 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2023; 44(37): 3627-39, CrossRef.

McDonagh TA, Metra M, Adamo M, Baumbach A, Böhm M, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021; 42(36): 3599-726, CrossRef.

Arozal W, Louisa M, Soetikno V. Selected Indonesian medicinal plants for the management of metabolic syndrome: Molecular basis and recent studies. Front Cardiovasc Med. 2020; 7: 82, CrossRef.

Sun YT, Xu H, Tan B, Yi Q, Liu HW, Tian J, et al. Andrographolide-treated bone marrow mesenchymal stem cells-derived conditioned medium protects cardiomyocytes from injury by metabolic remodeling. Mol Biol Rep. 2023; 50(3): 2651-62, CrossRef.

Tian Q, Liu J, Chen Q, Zhang M. Andrographolide contributes to the attenuation of cardiac hypertrophy by suppressing endoplasmic reticulum stress. Pharm Biol. 2023; 61(1): 61-8, CrossRef.

Wu QQ, Ni J, Zhang N, Liao HH, Tang QZ, Deng W. Andrographolide protects against aortic banding-induced experimental cardiac hypertrophy by inhibiting MAPKs signaling. Front Pharmacol. 2017; 8: 808, CrossRef.

Yang C, Zhu Q, Chen Y, Ji K, Li S, Wu Q, et al. Review of the protective mechanism of Curcumin on cardiovascular disease. Drug Des Devel Ther. 2024; 18: 165-92, CrossRef.

Soetikno V, Murwantara A, Andini P, Charlie F, Lazarus G, Louisa M, et al. Alpha-mangostin improves cardiac hypertrophy and fibrosis and associated biochemical parameters in high-fat/high-glucose diet and low-dose streptozotocin injection-induced type 2 diabetic rats. J Exp Pharmacol. 2020; 12: 27-38, CrossRef.

Sun B, Wu L, Wu Y, Zhang C, Qin L, Hayashi M, et al. Therapeutic potential of Centella asiatica and its triterpenes: A Review. Front Pharmacol. 2020; 11: 568032, CrossRef.

Gray NE, Alcazar Magana A, Lak P, Wright KM, Quinn J, Stevens JF, et al. Centella asiatica: Phytochemistry and mechanisms of neuroprotection and cognitive enhancement. Phytochem Rev. 2018; 17(1): 161-94, CrossRef.

Sabaragamuwa R, Perera CO, Fedrizzi B. Ultrasound assisted extraction and quantification of targeted bioactive compounds of Centella asiatica (Gotu kola) by UHPLC-MS/MS MRM tandem mass spectroscopy. Food Chem. 2022; 371: 131187, CrossRef.

Wong JH, Barron AM, Abdullah JM. Mitoprotective effects of Centella asiatica (L.) urb.: Anti-inflammatory and neuroprotective opportunities in neurodegenerative disease. Front Pharmacol. 2021; 12: 687935, CrossRef.

Qurrotuaini SP, Wiqoyah N, Mustika A. Antimicrobial activity of ethanol extract of Centella asiatica leaves on Proteus mirabilis, Proteus vulgaris, and Yersinia enterocolitica in vitro. Mol Cell Biomed Sci. 2022; 6(3): 135-40, CrossRef.

Wong JH, Barron AM, Abdullah JM. Mitoprotective effects of Centella asiatica (L.) Urb.: Anti-Inflammatory and neuroprotective opportunities in neurodegenerative disease. Front Pharmacol. 2021 Jun 29;12:687935, CrossRef.

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst Rev. 2021; 10(1): 89, CrossRef.

Hooijmans CR, Rovers MM, De Vries RBM, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE's risk of bias tool for animal studies. BMC Med Res Methodol. 2014; 14: 43, CrossRef.

Li H, Tian X, Ruan Y, Xing J, Meng Z. Asiatic acid alleviates Ang-II induced cardiac hypertrophy and fibrosis via miR-126/PIK3R2 signaling. Nutr Metab. 2021; 18(1): 71, CrossRef.

Bunbupha S, Prachaney P, Kukongviriyapan U, Kukongviriyapan V, Welbat JU, Pakdeechote P. Asiatic acid alleviates cardiovascular remodelling in rats with L-NAME-induced hypertension. Clin Exp Pharmacol Physiol. 2015; 42(11): 1189-97, CrossRef.

Si L, Xu J, Yi C, Xu X, Wang F, Gu W, et al. Asiatic acid attenuates cardiac hypertrophy by blocking transforming growth factor-β1-mediated hypertrophic signaling in vitro and in vivo. Int J Mol Med. 2014; 34(2): 499-506, CrossRef.

Si L, Xu J, Yi C, Xu X, Ma C, Yang J, et al. Asiatic acid attenuates the progression of left ventricular hypertrophy and heart failure induced by pressure overload by inhibiting myocardial remodeling in mice. J Cardiovasc Pharmacol. 2015; 66(6): 558-68, CrossRef.

Meng Z, Li H yu, Si C ying, Liu Y zhou, Teng S. Asiatic acid inhibits cardiac fibrosis throughNrf2/HO-1 and TGF-β1/Smads signaling pathways in spontaneous hypertension rats. Int Immunopharmacol. 2019; 74: 105712, CrossRef.

Xu X, Si L, Xu J, Yi C, Wang F, Gu W et al. Asiatic acid inhibits cardiac hypertrophy by blocking interleukin-1β-activated nuclear factor-κB signaling in vitro and in vivo. J Thorac Dis. 2015; 7(10): 1787-97, article.

Ding B, Niu W, Wang S, Zhang F, Wang H, Chen X et al. Centella asiatica (L.) Urb. attenuates cardiac hypertrophy and improves heart function through multi-level mechanisms revealed by systems pharmacology. J Ethnopharmacol. 2022; 291: 115106, CrossRef.

Ma ZG, Dai J, Wei WY, Zhang W Bin, Xu SC, Liao HH, et al. Asiatic acid protects against cardiac hypertrophy through activating AMPKα signalling pathway. Int J Biol Sci. 2016; 12(7): 861-71, CrossRef.

Huo L, Shi W, Chong L, Wang J, Zhang K, Li Y. Asiatic acid inhibits left ventricular remodeling and improves cardiac function in a rat model of myocardial infarction. Exp Ther Med. 2016; 11(1): 57-64, CrossRef.

Shimizu I, Minamino T. Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol. 2016; 97: 245-62, CrossRef.

Bhullar SK, Dhalla NS. Angiotensin II-induced signal transduction mechanisms for cardiac hypertrophy. Cells. 2022; 11(21): 3336, CrossRef.

Preedy MEJ, Baliga RS, Hobbs AJ. Multiplicity of nitric oxide and natriuretic peptide signaling in heart failure. J Cardiovasc Pharmacol. 2020; 75: 370-84, CrossRef.

van der Pol A, van Gilst WH, Voors AA, van der Meer P. Treating oxidative stress in heart failure: past, present and future. Eur J Heart Fail. 2019; 21(4): 425-35, CrossRef.

Ramachandra CJA, Cong S, Chan X, Yap EP, Yu F, Hausenloy DJ. Oxidative stress in cardiac hypertrophy: From molecular mechanisms to novel therapeutic targets. Free Radic Biol Med 2021; 166: 297-312, CrossRef.

Schwinger RHG. Pathophysiology of heart failure. Cardiovasc Diagn Ther. 2021; 11(1): 263-76, CrossRef.

Hingtgen SD, Tian X, Yang J, Dunlay SM, Peek AS, Wu Y, et al. Nox2-containing NADPH oxidase and Akt activation play a key role in angiotensin II-induced cardiomyocyte hypertrophy. Physiol Genomics. 2006; 26(3): 180-91, CrossRef.

Li C, Zhang J, Xue M, Li X, Han F, Liu X, et al. SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart. Cardiovasc Diabetol. 2019; 18(1): 15, CrossRef.

Slezak J, Kura B, Lebaron TW, Singal PK, Buday J, Barancik M. Oxidative stress and pathways of molecular hydrogen effects in medicine. Curr Pharm Des. 2021; 27(5): 610-25, CrossRef.

Van Linthout S, Tschöpe C. Inflammation - Cause or consequence of heart failure or both? Curr Heart Fail Rep. 2017; 14(4): 251-65, CrossRef.

Heallen T, Zhang M, Wang J, Bonilla-Claudio M, Klysik E, Johnson RL, et al. Hippo pathway inhibits wnt signaling to restrain cardiomyocyte proliferation and heart size. Science. 2011; 332(6028): 458-61, CrossRef.

Xin M, Kim Y, Sutherland LB, Qi X, McAnally J, Schwartz RJ, et al. Development: Regulation of insulin-like growth factor signaling by Yap governs cardiomyocyte proliferation and embryonic heart size. Sci Signal. 2011; 4(196): ra70, CrossRef.

Kashihara T, Sadoshima J. Role of YAP/TAZ in energy metabolism in the heart. J Cardiovasc Pharmacol. 22019; 74(6): 483-90, CrossRef.

Bahrami-B F, Ataie-Kachoie P, Pourgholami MH, Morris DL. p70 ribosomal protein S6 kinase (Rps6kb1): An update. J Clin Pathol. 2014; 67(12): 1019-25, CrossRef.

Tokarska-Schlattner M, Kay L, Perret P, Isola R, Attia S, Lamarche F, et al. Role of cardiac AMP-activated protein kinase in a non-pathological setting: Evidence from cardiomyocyte-specific, inducible AMP-activated protein kinase α1α2-knockout mice. Front Cell Dev Biol. 2021; 9: 731015, CrossRef.

Gélinas R, Mailleux F, Dontaine J, Bultot L, Demeulder B, Ginion A, et al. AMPK activation counteracts cardiac hypertrophy by reducing O-GlcNAcylation. Nat Commun. 2018; 9(1): 374, CrossRef.

Ramadhan AY, Soetikno V. Molecular adaptation of cardiac remodeling in metabolic syndrome: Focus on AMPK, SIRT1 and PGC-1a. Mol Cell Biomed Sci. 2024; 8(1): 15-22, CrossRef.

Sukmawati IR, Wijaya A. Molecular regulators of metabolism and cardiometabolic disease. Indones Biomed J. 2012; 4(3): 129-42, CrossRef.

Choi YS, de Mattos ABM, Shao D, Li T, Nabben M, Kim M, et al. Preservation of myocardial fatty acid oxidation prevents diastolic dysfunction in mice subjected to angiotensin II infusion. J Mol Cell Cardiol. 2016; 100: 64-71, CrossRef.

Bunaim MK, Kamisah Y, Mohd Mustazil MN, Fadhlullah Zuhair JS, Juliana AH, Muhammad N. Centella asiatica (L.) Urb. Prevents hypertension and protects the heart in chronic nitric oxide deficiency rat model. Front Pharmacol. 2021; 12: 742562, CrossRef.

Razali NNM, Ng CT, Fong LY. Cardiovascular protective effects of Centella asiatica and its triterpenes: A Review. Planta Med. 2019; 85(16): 1203-15, CrossRef.

Sun B, Wu L, Wu Y, Zhang C, Qin L, Hayashi M, et al. Therapeutic potential of Centella asiatica and its triterpenes: A Review. Front Pharmacol. 2020; 11: 568032, CrossRef.

Maneesai P, Bunbupha S, Kukongviriyapan U, Prachaney P, Tangsucharit P, Kukongviriyapan V, et al. Asiatic acid attenuates renin-angiotensin system activation and improves vascular function in high-carbohydrate, high-fat diet fed rats. BMC Complement Altern Med 2016; 16: 123, CrossRef.




DOI: https://doi.org/10.21705/mcbs.v9i1.482

Copyright (c) 2025 Cell and BioPharmaceutical Institute

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexed by:

               

                      


Cell and BioPharmaceutical Institute