Mitochondrial Dynamics: An Attractive Therapeutic Target for Ischemia-Reperfusion Injury in the Heart

Elisha Rosalyn Rosdah, Eka Febri Zulissetiana, Ayeshah Augusta Rosdah

Abstract


Myocardial infarction is one of the leading causes of death worldwide. Current treatments do not compensate for the loss of cardiomyocytes, thus progression to heart failure is often inevitable. In myocardial infarction, the occlusion of coronary arteries and sudden restoration of blood flow give rise to ischemia-reperfusion injury, which leads to cardiomyocyte death. Mitochondria are not only involved in the bioenergetic aspect of the heart but also play a pivotal role in cell death during ischemia-reperfusion injury. Their morphology dynamically changes via fusion and fission in a balanced manner to maintain cellular health. However, ischemia-reperfusion injury triggers excessive mitochondrial fission, which is pathological to the myocardium. This review article discusses the association between myocardial ischemia-reperfusion injury and mitochondrial dynamics, serving as a rationale for a novel therapeutic strategy for myocardial infarction. Strategic modulation of mitochondrial dynamics under this pathological setting has been shown to be effective for cardioprotection. Increasing mitochondrial fusion or reducing excessive mitochondrial fission in the myocardial tissue could prevent cardiomyocyte death, thereby reducing infarct size. Proof-of-concept studies have utilized small molecules and peptides to implement this strategy into in vivo myocardial ischemia-reperfusion injury models. However, there remains a need to address the issues of specificity, bioavailability, and potency of these pharmacological agents before future application in cardiovascular therapeutics. Nevertheless, there has been growing interest in this therapeutic strategy in recent years, rendering it an attractive approach for ischemia-reperfusion injury in the heart.

Keywords: mitochondria, heart, ischemia-reperfusion, cardioprotection


Full Text:

PDF

References


World Health Organization. World Health Statistics 2019: Monitoring Health for the SDGs Sustainable Development Goals. Geneva: World Health Organization; 2019, article.

Sanchis-Gomar F, Perez-Quilis C, Leischik R, Lucia A. Epidemiology of coronary heart disease and acute coronary syndrome. Ann Transl Med. 2016; 4(13): 256, CrossRef.

Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, et al. Heart disease and stroke statistics - 2022 Update: A report from the American Heart Association. Circulation. 2022; 145(8): e153-639, article.

Avan A, Digaleh H, Di Napoli M, Stranges S, Behrouz R, Shojaeianbabaei G, et al. Socioeconomic status and stroke incidence, prevalence, mortality, and worldwide burden: An ecological analysis from the Global Burden of Disease Study 2017. BMC Med. 2019;17(1): 191, CrossRef.

He J, Liu D, Zhao L, Zhou D, Rong J, Zhang L, et al. Myocardial ischemia/reperfusion injury: Mechanisms of injury and implications for management (Review). Exp Ther Med. 2022; 23(6): 430, CrossRef.

Yang CF. Clinical manifestations and basic mechanisms of myocardial ischemia/reperfusion injury. Ci Ji Yi Xue Za Zhi. 2018; 30(4): 209-15, CrossRef.

Neverisky DL, Abbott GW. Ion channel-transporter interactions. Crit Rev Biochem Mol Biol. 2015; 51(4): 257-67, CrossRef.

Morciano G, Bonora M, Campo G, Aquila G, Rizzo P, Giorgi C, et al. Mechanistic role of mPTP in ischemia-reperfusion injury. Adv Exp Med Biol. 2017; 982: 169-89, CrossRef.

Ramachandra CJA, Hernandez-Resendiz S, Crespo-Avilan GE, Lin YH, Hausenloy DJ. Mitochondria in acute myocardial infarction and cardioprotection. EBioMedicine. 2020; 57: 102884, CrossRef.

Seidlmayer LK, Juettner VV, Kettlewell S, Pavlov EV, Blatter LA, Dedkova EN. Distinct mPTP activation mechanisms in ischaemia-reperfusion: Contributions of Ca2+, ROS, pH, and inorganic polyphosphate. Cardiovasc Res. 2015; 106(2): 237-48, CrossRef.

Seidlmayer LK, Gomez-Garcia MR, Shiba T, Porter Jr GA, Pavlov EV, Bers DM, et al. Dual role of inorganic polyphosphate in cardiac myocytes: The importance of polyP chain length for energy metabolism and mPTP activation. Arch Biochem Biophys. 2019; 662: 177-89, CrossRef.

Perricone AJ, Vander Heide RS. Novel therapeutic strategies for ischemic heart disease. Pharmacol Res. 2014; 89: 36-45, CrossRef.

Zhou T, Prather ER, Garrison DE, Zuo L. Interplay between ROS and antioxidants during ischemia-reperfusion injuries in cardiac and skeletal muscle. Int J Mol Sci. 2018; 19(2): 417, CrossRef.

Estevez-Loureiro R, Lopez-Sainz A, Perez de Prado A, Cuellas C, Calvino Santos R, Alonso-Orcajo N, et al. Timely reperfusion for ST-segment elevation myocardial infarction: Effect of direct transfer to primary angioplasty on time delays and clinical outcomes. World J Cardiol. 2014; 6(6): 424-33, CrossRef.

Tendean M, Oktaviono YH, Sandra F. Cardiomyocyte reprogramming: A potential strategy for cardiac regeneration. Mol Cell Biomed Sci. 2017; 1(1): 1-5, CrossRef.

Nallamothu BK, Normand SLT, Wang Y, Hofer TP, Brush Jr JE, Messenger JC, et al. Relation between door-to-balloon times and mortality after primary percutaneous coronary intervention over time: A retrospective study. Lancet. 2015; 385(9973): 1114-22, CrossRef.

Osnabrugge RL, Magnuson EA, Serruys PW, Campos CM, Wang K, van Klaveren D, et al. Cost-effectiveness of percutaneous coronary intervention versus bypass surgery from a Dutch perspective. Heart. 2015; 101(24): 1980-8, CrossRef.

Giantini A, Timan IS, Listiyaningsih E, Dharma R, Setiabudy R, Alwi I, et al. Comparison of light transmission aggregometry and verifynow in detecting clopidogrel resistance and factors affecting clopidogrel resistance in AMI-EST patients undergoing percutaneous coronary intervention: A cross-sectional study. Indones Biomed J. 2021; 13(2): 163-9, CrossRef.

Scholz KH, Meyer T, Lengenfelder B, Vahlhaus C, Tongers J, Schnupp S, et al. Patient delay and benefit of timely reperfusion in ST-segment elevation myocardial infarction. Open Heart. 2021; 8(1): e001650, CrossRef.

Dixit P, Katare R. Challenges in identifying the best source of stem cells for cardiac regeneration therapy. Stem Cell Res Ther. 2015; 6(26): 1-12, CrossRef.

Lesnefsky EJ, Chen Q, Hoppel CL. Mitochondrial metabolism in aging heart. Circ Res. 2016; 118(10): 1593-611, CrossRef.

Hollander JM, Thapa D, Shepherd DL. Physiological and structural differences in spatially distinct subpopulations of cardiac mitochondria: Influence of cardiac pathologies. Am J Physiol Heart Circ Physiol. 2014; 307(1): H1-14, CrossRef.

Lu X, Thai PN, Lu S, Pu J, Bers DM. Intrafibrillar and perinuclear mitochondrial heterogeneity in adult cardiac myocytes. J Mol Cell Cardiol. 2019; 136: 72-84, CrossRef.

Kalkhoran SB, Munro P, Qiao F, Ong SB, Hall AR, Cabrera-Fuentes H, et al. Unique morphological characteristics of mitochondrial subtypes in the heart: The effect of ischemia and ischemic preconditioning. Discoveries. 2017; 5(1): e71, CrossRef.

Chen W, Zhao H, Li Y. Mitochondrial dynamics in health and disease: Mechanisms and potential targets. Signal Transduct Target Ther. 2023; 8(1): 333, CrossRef.

Meiliana A, Dewi NM, Wijaya A. Mitochondria: Master regulator of metabolism, homeostasis, stress, aging and epigenetics. Indones Biomed J. 2021; 13(3): 221-41, CrossRef.

Rosdah AA, K. Holien J, Delbridge LM, Dusting GJ, Lim SY. Mitochondrial fission - A drug target for cytoprotection or cytodestruction? Pharmacol Res Perspect. 2016; 4(3):e00235, CrossRef.

Buck MD, O'Sullivan D, Klein Geltink RI, Curtis JD, Chang CH, Sanin DE, et al. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell. 2016; 166(1): 63-76, CrossRef.

Hoque A, Sivakumaran P, Bond ST, Ling NXY, Kong AM, Scott JW, et al. Mitochondrial fission protein Drp1 inhibition promotes cardiac mesodermal differentiation of human pluripotent stem cells. Cell Death Discov. 2018; 4: 39, CrossRef.

Kraus F, Roy K, Pucadyil TJ, Ryan MT. Function and regulation of the divisome for mitochondrial fission. Nature. 2021; 590(7844): 57-66, CrossRef.

Gyllenhammer LE, Rasmussen JM, Bertele N, Halbing A, Entringer S, Wadhwa PD, et al. Maternal inflammation during pregnancy and offspring brain development: The role of mitochondria. Biol Psychiatry Cogn Neurosci Neuroimaging. 2022; 7(5): 498-509, CrossRef.

Herst PM, Rowe MR, Carson GM, Berridge MV. Functional mitochondria in health and disease. Front Endocrinol. 2017; 8: 296, CrossRef.

Yan C, Duanmu X, Zeng L, Liu B, Song Z. Mitochondrial DNA: Distribution, mutations, and elimination. Cells. 2019; 8(4): 379, CrossRef.

Gao S, Hu J. Mitochondrial fusion: The machineries in and out. Trends in cell biology. 2021; 31(1): 62-74, CrossRef.

Serasinghe MN, Chipuk JE. Mitochondrial Fission in Human Diseases. Handb Exp Pharmacol. 2017; 240: 159-88, CrossRef.

Cereghetti GM, Stangherlin A, Martins de Brito O, Chang CR, Blackstone C, Bernardi P, et al. Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc Natl Acad Sci USA. 2008; 105(41): 15803-8, CrossRef.

Qi X, Disatnik MH, Shen N, Sobel RA, Mochly-Rosen D. Aberrant mitochondrial fission in neurons induced by protein kinase Cδ under oxidative stress conditions in vivo. Mol Biol Cell. 2011; 22(2): 256-65, CrossRef.

Taguchi N, Ishihara N, Jofuku A, Oka T, Mihara K. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J Biol Chem. 2007; 282(15): 11521-9, CrossRef.

Xie Q, Wu Q, Horbinski CM, Flavahan WA, Yang K, Zhou W, et al. Mitochondrial control by Drp1 in brain tumor initiating cells. Nat Neurosci. 2015; 18(4): 501-10, CrossRef.

Lyra-Leite DM, Petersen AP, Ariyasinghe NR, Cho N, McCain ML. Mitochondrial architecture in cardiac myocytes depends on cell shape and matrix rigidity. J Mol Cell Cardiol. 2021; 150: 32-43, CrossRef.

Li Y, Liu X. Novel insights into the role of mitochondrial fusion and fission in cardiomyocyte apoptosis induced by ischemia/reperfusion. J Cell Physiol. 2018; 233(8): 5589-97, CrossRef.

Jendrach M, Pohl S, Vöth M, Kowald A, Hammerstein P, Bereiter-Hahn J. Morpho-dynamic changes of mitochondria during ageing of human endothelial cells. Mech Ageing Dev. 2005; 126(6-7): 813-21, CrossRef.

Legros F, Lombes A, Frachon P, Rojo M. Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. Mol Biol Cell. 2002; 13(12): 4343-54, CrossRef.

Lovy A, Molina AJ, Cerqueira FM, Trudeau K, Shirihai OS. A faster, high resolution, mtPA-GFP-based mitochondrial fusion assay acquiring kinetic data of multiple cells in parallel using confocal microscopy. J Vis Exp. 2012; (65): e3991, CrossRef.

Duan C, Kuang L, Hong C, Xiang X, Liu J, Li Q, et al. Mitochondrial Drp1 recognizes and induces excessive mPTP opening after hypoxia through BAX-PiC and LRRK2-HK2. Cell Death Dis. 2021; 12(11): 1050, CrossRef.

Zemirli N, Morel E, Molino D. Mitochondrial dynamics in basal and stressful conditions. Int J Mol Sci. 2018; 19(2): 564, CrossRef.

Sharp WW, Fang YH, Han M, Zhang HJ, Hong Z, Banathy A, et al. Dynamin-related protein 1 (Drp1)-mediated diastolic dysfunction in myocardial ischemia-reperfusion injury: Therapeutic benefits of Drp1 inhibition to reduce mitochondrial fission. FASEB J. 2014; 28(1): 316-26, CrossRef.

Zhang C, Huang J, An W. Hepatic stimulator substance resists hepatic ischemia/reperfusion injury by regulating Drp1 translocation and activation. Hepatology. 2017; 66(6): 19892001, CrossRef.

Wu M, Gu X, Ma Z. Mitochondrial quality control in cerebral ischemia-reperfusion injury. Mol Neurobiol. 2021; 58(10): 5253-71, CrossRef.

Ong SB, Kalkhoran SB, Hernández-Reséndiz S, Samangouei P, Ong SG, Hausenloy DJ. Mitochondrial-shaping proteins in cardiac health and disease - The long and the short of it! Cardiovasc Drugs Ther. 2017; 31(1): 87-107, CrossRef.

Hernandez-Resendiz S, Prunier F, Girao H, Dorn G, Hausenloy DJ; EU-CARDIOPROTECTION COST Action (CA16225). Targeting mitochondrial fusion and fission proteins for cardioprotection. J Cell Mol Med. 2020; 24(12): 6571-85, CrossRef.

Tian L, Neuber-Hess M, Mewburn J, Dasgupta A, Dunham-Snary K, Wu D, et al. Ischemia-induced Drp1 and Fis1-mediated mitochondrial fission and right ventricular dysfunction in pulmonary hypertension. J Mol Med. 2017; 95(4): 381-93, CrossRef.

Hall AR, Burke N, Dongworth RK, Kalkhoran SB, Dyson A, Vicencio JM, et al. Hearts deficient in both Mfn1 and Mfn2 are protected against acute myocardial infarction. Cell Death Dis. 2016; 7(5): e2238, CrossRef.

Kalkhoran SB, Kriston-Vizi J, Hernandez-Resendiz S, Crespo-Avilan GE, Rosdah AA, Lees JG, et al. Hydralazine protects the heart against acute ischaemia/reperfusion injury by inhibiting Drp1-mediated mitochondrial fission. Cardiovasc Res. 2022; 118(1): 282-94, CrossRef.

Ong SB, Hall AR, Dongworth RK, Kalkhoran S, Pyakurel A, Scorrano L, et al. Akt protects the heart against ischaemia-reperfusion injury by modulating mitochondrial morphology. Thromb Haemost. 2015; 113(03): 513-21, CrossRef.

Ishihara T, Ban-Ishihara R, Maeda M, Matsunaga Y, Ichimura A, Kyogoku S, et al. Dynamics of mitochondrial DNA nucleoids regulated by mitochondrial fission is essential for maintenance of homogeneously active mitochondria during neonatal heart development. Mol Cell Biol. 2015; 35(1): 211-23, CrossRef.

Kageyama Y, Hoshijima M, Seo K, Bedja D, Sysa-Shah P, Andrabi SA, et al. Parkin-independent mitophagy requires Drp1 and maintains the integrity of mammalian heart and brain. EMBO J. 2014; 33(23): 2798-813, CrossRef.

Song M, Mihara K, Chen Y, Scorrano L, Dorn GW. Mitochondrial fission and fusion factors reciprocally orchestrate mitophagic culling in mouse hearts and cultured fibroblasts. Cell Metab. 2015; 21(2): 273-86, CrossRef.

Wang D, Wang J, Bonamy G, Meeusen S, Brusch RG, Turk C, et al. A small molecule promotes mitochondrial fusion in mammalian cells. Angew Chem Int Ed Engl. 2012; 51(37): 9302-5, CrossRef.

Yue W, Chen Z, Liu H, Yan C, Chen M, Feng D, et al. A small natural molecule promotes mitochondrial fusion through inhibition of the deubiquitinase USP30. Cell Res. 2014; 24(4): 482-96, CrossRef.

Miret-Casals L, Sebastian D, Brea J, Rico-Leo EM, Palacin M, Fernández-Salguero PM, et al. Identification of new activators of mitochondrial fusion reveals a link between mitochondrial morphology and pyrimidine metabolism. Cell Chem Biol. 2018; 25(3): 268-78.e4, CrossRef.

Rocha AG, Franco A, Krezel AM, Rumsey JM, Alberti JM, Knight WC, et al. MFN2 agonists reverse mitochondrial defects in preclinical models of Charcot-Marie-Tooth disease type 2A. Science. 2018; 360(6386): 336-41, CrossRef.

Ishihara N, Nomura M, Jofuku A, Kato H, Suzuki SO, Masuda K, et al. Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat Cell Biol. 2009; 11(8): 958-66, CrossRef.

Wakabayashi J, Zhang Z, Wakabayashi N, Tamura Y, Fukaya M, Kensler TW, et al. The dynamin-related GTPase Drp1 is required for embryonic and brain development in mice. J Cell Biol. 2009; 186(6): 805-16, CrossRef.

Chou CH, Lin CC, Yang MC, Wei CC, Liao HD, Lin RC, et al. GSK3β-mediated Drp1 phosphorylation induced elongated mitochondrial morphology against oxidative stress. Plos One. 2012; 7(11): e49112, CrossRef.

Din S, Mason M, Völkers M, Johnson B, Cottage CT, Wang Z, et al. Pim-1 preserves mitochondrial morphology by inhibiting dynamin-related protein 1 translocation. Proc Natl Acad Sci U S A. 2013; 110(15): 5969-74, CrossRef.

Wang X, Song Q. Mst1 regulates post-infarction cardiac injury through the JNK-Drp1-mitochondrial fission pathway. Cell Mol Biol Lett. 2018; 23:21, CrossRef.

Ong SB, Kalkhoran SB, Cabrera-Fuentes HA, Hausenloy DJ. Mitochondrial fusion and fission proteins as novel therapeutic targets for treating cardiovascular disease. Eur J Pharmacol. 2015; 763(Pt A):104-14, CrossRef.

Gao D, Zhang L, Dhillon R, Hong TT, Shaw RM, Zhu J. Dynasore protects mitochondria and improves cardiac lusitropy in Langendorff perfused mouse heart. Plos One. 2013; 8(4): e60967, CrossRef.

Qi X, Qvit N, Su YC, Mochly-Rosen D. A novel Drp1 inhibitor diminishes aberrant mitochondrial fission and neurotoxicity. J Cell Sci. 2013; 126(Pt 3): 789-802, CrossRef.

Cassidy-Stone A, Chipuk JE, Ingerman E, Song C, Yoo C, Kuwana T, et al. Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev Cell. 2008; 14(2): 193-204, CrossRef.

Bordt EA, Clerc P, Roelofs BA, Saladino AJ, Tretter L, Adam-Vizi V, et al. The putative Drp1 inhibitor Mdivi-1 is a reversible mitochondrial complex I inhibitor that modulates reactive oxygen species. Dev Cell. 2017; 40(6): 583-94.e6, CrossRef.

Koch B, Barugahare AA, Lo TL, Huang C, Schittenhelm RB, Powell DR, et al. A metabolic checkpoint for the yeast-to-hyphae developmental switch regulated by endogenous nitric oxide signaling. Cell Rep. 2018; 25(8): 2244-58 e7, CrossRef.

Ahmed A, Trezza A, Gentile M, Paccagnini E, Lupetti P, Spiga O, et al. The drp-1-mediated mitochondrial fission inhibitor mdivi-1 impacts the function of ion channels and pathways underpinning vascular smooth muscle tone. Biochem Pharmacol. 2022; 203: 115205, CrossRef.

Rosdah AA, Abbott BM, Langendorf CG, Deng Y, Truong JQ, Waddell HMM, et al. A novel small molecule inhibitor of human Drp1. Sci Rep. 2022; 12(1): 21531, CrossRef.

Mallat A, Uchiyama LF, Lewis SC, Fredenburg RA, Terada Y, Ji N, et al. Discovery and characterization of selective small molecule inhibitors of the mammalian mitochondrial division dynamin, DRP1. Biochem Biophys Res Commun. 2018; 499(3): 556-62, CrossRef.

Shimada T, Horita K, Murakami M, Ogura R. Morphological studies of different mitochondrial populations in monkey myocardial cells. Cell Tissue Res. 1984; 238: 577-82, CrossRef.




DOI: https://doi.org/10.21705/mcbs.v8i3.487

Copyright (c) 2024 Cell and BioPharmaceutical Institute

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexed by:

               

                      


Cell and BioPharmaceutical Institute