Cardiomyocyte Reprogramming: A Potential Strategy for Cardiac Regeneration

Marshel Tendean, Yudi Her Oktaviono, Ferry Sandra


Heart disease is the leading cause of death worldwide. Within decades a limited process of cardiac cell regeneration was under observation. Embryonic stem cell (ESC) shows great potential for cell and tissue regeneration. Studies indicate that ESC has the potential to enhance myocardial perfusion and/or contractile performance in ischemic myocardium. However there is still challenge to evaluate the issues of teratoma. Then induced pluripotent stem cell was invented by introducing four transcriptional factors (Oct4Sox2Klf4c-Myc). iPSC was created from murine fibroblast and then differentiated into cardiomyocyte. Reprogramming the adult cell could be performed in full, partial or direct reprogramming. Several studies add the significance by reprogramming the cells through more efficient techniques. However several limitations are still remained.

Keywords: cardiomyocyte, reprogramming, iPSC, fibroblast

Full Text:



Department of Health Statistics and Informatics in the Information, Evidence and Research Cluster of WHO. The Global Burden of Disease: 2004 Update. Geneva; 2008. Link

Lin Z, Pu WT. Strategies for Cardiac Regeneration and Repair. Sci Transl Med. 2014; 6(239): 239rv1. doi: 10.1126/scitranslmed.3006681. CrossRef

Steinhauser ML, Lee RT. Regeneration of the Heart. EMBO Mol Med. 2011; 3(12): 701-12. CrossRef

Li N, Wang C, Jia L, Du J. Heart Regeneration, Stem Cells, and Cytokines. Regen Med Res. 2014; 2: 6. doi: 10.1186/2050-490X-2-6. CrossRef

Nam YJ, Song K, Olson EN. Heart Repair by Cardiac Reprogramming. Nat Med. 2013; 19: 413-5. CrossRef

Mummery C, Ward-van Oostwaard D, Doevendans P, Spijker R, van den Brink S, Hassink R, et al. Differentiation of Human Embryonic Stem Cells to Cardiomyocytes: Role of Coculture with Visceral Endoderm-Like Cells. Circulation 2003; 107: 2733-40. CrossRef

Takahashi K, Yamanaka S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 2006; 126(4): 663-76. CrossRef

Fujita J, Fukuda K. Future Prospects for Regenerated Heart Using Induced Pluripotent Stem Cells. J Pharmacol Sci. 2014; 125(1): 1–5. CrossRef

Efe JA, Hilcove S, Kim J, Zhou H, Ouyang K, Wang G, et al. Conversion of Mouse Fibroblasts into Cardiomyocytes Using a Direct Reprogramming Strategy. Nat Cell Biol. 2011; 13: 215-22. CrossRef

Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, et al. Direct Reprogramming of Fibroblasts into Functional Cardiomyocytes by Defined Factors. Cell. 2010; 142(3): 375-86. CrossRef

Cano-Martínez A, Vargas-González A, Guarner-Lans V, Prado-Zayago E, León-Oleda M, Nieto-Lima B. Functional and Structural Regeneration in the Axolotl Heart (Ambystoma Mexicanum) after Partial Ventricular Amputation. Arch Cardiol Mex. 2010; 80(2): 79-86. Link

Oberpriller JO, Oberpriller JC. Response of the Adult Newt Ventricle to Injury. J Exp Zool. 1974; 187(2): 249-59. CrossRef

Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, et al. Transient Regenerative Potential of the Neonatal Mouse Heart. Science. 2011; 331(6020): 1078-80. CrossRef

Pasumarthi KBS, Field LJ. Cardiomyocyte Cell Cycle Regulation. Circ Res. 2002; 90: 1044-54. CrossRef

Bergmann O, Zdunek S, Felker A, Salehpour M, Alkass K, Bernard S, et al. Dynamics of Cell Generation and Turnover in the Human Heart. Cell 2015; 161(7): 1566-75. CrossRef

Mollova M, Bersell K, Walsh S, Savla J, Das LT, Park SY, et al. Cardiomyocyte Proliferation Contributes to Heart Growth in Young Humans. Proc Natl Acad Sci. 2013; 110(4): 1446–51. CrossRef

Kajstura J, Gurusamy N, Ogórek B, Goichberg P, Clavo-Rondon C, Hosoda T, et al. Myocyte Turnover in the Aging Human Heart. Circ Res. 2010; 107: 1374-86. CrossRef

Behfar A, Yamada S, Crespo-Diaz R, Nesbitt JJ, Rowe LA, Perez-Terzic C, et al. Guided Cardiopoiesis Enhances Therapeutic Benefit of Bone Marrow Human Mesenchymal Stem Cells in Chronic Myocardial Infarction. J Am Coll Cardiol. 2010; 56(9): 721-34. CrossRef

Moenadjat Y, Merlina M, Surjadi CF, Sardjono CT, Kusnadi Y, Sandra F. The Application of Human Umbilical Cord Blood Mononuclear Cells in the Management of Deep Partial Thickness Burn. Med J Indones. 2013; 22(2): 92-9. CrossRef

Djuwantono T, Wirakusumah FF, Achmad TH, Sandra F, Halim D, Faried A. A Comparison of Cryopreservation Methods: Slow-Cooling vs. Rapid-Cooling Based on Cell Viability, Oxidative Stress, Apoptosis, and CD34+ Enumeration of Human Umbilical Cord Blood Mononucleated Cells. BMC Res Notes. 2011; 4: 371. doi: 10.1186/1756-0500-4-371. CrossRef

Wijaya MT, Sandra F. Proses dalam Umbilical Cord Blood Banking. CDK. 2007; 34(157): 217-20. Link

Murry CE, Palpant NJ, Maclellan WR. Cardiopoietry in Motion: Primed Mesenchymal Stem Cells for Ischemic Cardiomyopathy. J Am Coll Cardiol. 2013; 61(23): 2339-40. CrossRef

Lubis AM, Sandhow L, Lubis VK, Noor A, Gumay F, Merlina M, et al. Isolation and Cultivation of Mesenchymal Stem Cells from Iliac Crest Bone Marrow for Further Cartilage Defect Management. Acta Med Indones. 2011; 43(3): 178-84. Link

Siu CW, Tse HF. Cardiac Regeneration: Messages from CADUCEUS. Lancet.2012; 379(9819): 870-1. CrossRef

Oktaviono YH, Sargowo D, Widodo MA, Dirgantara Y, Chouw A, Sandra F. Proliferation of Peripheral Blood-derived Endothelial Progenitor Cells from Stable Angina Subjects. Indones Biomed J. 2014; 6(2): 91-6. CrossRef

Sandra F, Oktaviono YH, Widodo MA, Dirgantara Y, Chouw A, Sargowo D. Endothelial Progenitor Cells Proliferated via MEK-dependent p42 MAPK Signaling Pathway. Mol Cell Biochem. 2015; 400(1): 201-6. CrossRef

Nababan SHH, Purba AP, Frisca, Aini N, Setiawan B, Sandra F. Peranan Endothelial Progenitor Cell dalam Neovaskularisasi. CDK. 2007; 34(5): 257-9. Link

Frisca, Sardjono CT, Sandra F. Berbagai Paradigma Pendefinisian Endothelial Progenitor Cells. JKM. 2008; 8(1): 78-86. Link

Doppler SA, Deutsch MA, Lange R, Krane M. Cardiac Regeneration: Current Therapies-Future Concepts. J Thorac Dis. 2013; 5(5): 683-97. Link

Dixit P, Katare R. Challenges in Identifying the Best Source of Stem Cells for Cardiac Regeneration Therapy. Stem Cell Res Ther. 2015; 6: 26. doi: 10.1186/s13287-015-0010-8. CrossRef

Ieda M. Heart Regeneration Using Reprogramming Technology. Proc Jpn Acad Ser B Phys Biol Sci. 2013; 89(3): 118-28. CrossRef

Yamakawa H, Ieda M. Strategies for Heart Regeneration: Approaches Ranging from Induced Pluripotent Stem Cells to Direct Cardiac Reprogramming. Inter Heart J. 2015; 56(1): 1–5. doi: 10.1536/ihj.14-344. CrossRef

Budniatzky I, Gepstein L. Concise Review: Reprogramming Strategies for Cardiovascular Regenerative Medicine: from Induced Pluripotent Stem Cells to Direct Reprogramming. Stem Cells Transl Med. 2014; 3(4): 448-57. CrossRef

Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell. 2007; 131(5): 861-72. CrossRef

Song K, Nam Y, Luo X, Qi X, Tan W, Huang GN, et al. Heart Repair by Reprogramming Non-Myocytes with Cardiac Transcription Factors. Nature. 2012; 485(7400): 599-604. CrossRef

Protze S, Khattak S, Poulet C, Lindemann D, Tanaka EM, Ravens U. A New Approach to Transcription Factor Screening for Reprogramming of Fibroblasts to Cardiomyocyte-Like Cells. J Mol Cell Cardiol. 2013; 53(3): 323-32. CrossRef

Qian L, Huang Y, Spencer CI, Folay A, Vedantham V, Liu L et al. In Vivo Reprogramming of Murine Cardiac Fibroblasts into Induced Cardiomyocytes. Nature. 2012; 485(400): 593-8. CrossRef

Jakob P, Landmesser U. Role of microRNAs in Stem/Progenitor Cells and Cardiovascular Repair. Cardiovasc Res. 2012; 93(4): 614-22. CrossRef

Jayawardena TM, Egemnazarov B, Finch EA, Zhang L, Payne JA, Pandya K, et al. MicroRNA-Mediated In Vitro and In Vivo Direct Reprogramming of Cardiac Fibroblasts to Cardiomyocytes. Circ Res. 2013; 110(11): 1465-73. CrossRef

Muraoka N, Yamakawa H, Miyamoto K, Sadahiro T, Umei T, Isomi M, et al. MiR-133 Promotes Cardiac Reprogramming by Directly Repressing Snai1 and Silencing Fibroblast Signatures. EMBO J. 2014; 33(14): 1565-81. CrossRef

Wada R, Muraoka N, Inagawa K, Yamakawa H, Miyamoto K, Sadahiro T, et al. Induction of Human Cardiomyocyte-like Cells from Fibroblasts by Defined Factors. Proc Natl Acad Sci. 2013; 110(31): 12667-72. CrossRef

Fu JD, Stone NR, Liu L, Spencer CI, Qian L, Hayashi Y, et al. Direct Reprogramming of Human Fibroblasts Toward a Cardiomyocyte-like State. Stem Cell Reports. 2013: 1(3): 235-47. CrossRef

Nam YJ, Song K, Luo X, Daniel E, Lambeth K, West K, et al. Reprogramming of Human Fibroblasts Toward a Cardiac Fate. Proc Natl Acad Sci. 2013; 110(14): 5588-93. CrossRef

Islas JF, Liu Y, Weng KC, Robertson MJ, Zhang S, Prejusa A, et al. Transcription Factors ETS2 and MESP1 Transdifferentiate Human Dermal Fibroblasts into Cardiac Progenitors. Proc Natl Acad Sci. 2012; 109(32): 13016-21. CrossRef

Garbern JC, Lee RT. Cardiac Stem Cell Therapy and The Promise of Heart Regeneration. Cell Stem Cell. 2013; 12(6): 689-98. CrossRef

Palazzolo G, Quattrocelli M, Toelen J, Dominici R, Anastasia L, Tettamenti G, et al. Cardiac Niche Influences the Direct Reprogramming of Canine Fibroblasts into Cardiomyocyte-like Cells. Stem Cells Int. 2016; 2016. doi: 10.1155/2016/4969430. CrossRef


Copyright (c) 2017 Cell and BioPharmaceutical Institute

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexed by:




Cell and BioPharmaceutical Institute