Adiponectin and Its Role in Inflammatory Process of Obesity

Ami Febriza, Ridwan Ridwan, Suryani As'ad, Vivien Novarina Kasim, Hasta Handayani Idrus

Abstract


Obesity is a chronic, low degree systemic inflammatory status. Microarray examination shows a disturbance in the expression of cytokine, chemokine, complementary protein and half of the other acute phase components in obese patients. Adiponectin is the hormone that increases insulin sensitivity, while its level decreases under condition of fatty tissue enlargement that occurs in obesity. Excessive weight causes the adipocyte cells and adipose tissues produce various types of mediators. The inflammatory process is the main cause of metabolic diseases, and the main role of adipose tissue in the inflammatory process is determined by the production of pro-inflammatory mediators and anti-inflammatory mediators. Adiponectin has an important anti-inflammatory effect on obesity. Adiponectin has an important anti-inflammatory effect on obesity. Adiponectin works on macrophage and monocyte to inhibit the production of pro-inflammatory cytokine and increase the expression of interleukin (IL)-10 and IL-1 receptor antagonists. Adiponectin reduces induction of intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 endothelial adhesion by TNF-α or resistin. In obese patients, it is characterized by resistance to adiponectin alongside a decrease and the possibility of adiponectin loss in the receptor population in liver and muscles, leading to low adiponectin level.

Keywords: adiponectin, obesity, inflammation


Full Text:

PDF

References


Yussac MAA, Cahyadi A, Putri AC, Dewi AS, Khomaini A, Bardosono S, et al. Prevalensi obesitas pada anak usia 4-6 tahun dan hubungannya dengan asupan serta pola makan. Maj Kedokt Indones. 2007; 57(2): 47-53, article.

Rocha VZ, Folco EJ. Inflammatory concepts of obesity. Int J Inflam. 2011; 2011: 529061, CrossRef.

Shoelson SE, Herrero L, Naaz A. Obesity, inflammation, and insulin resistance. Gastroenterology. 2007; 132(6): 2169-80, CrossRef.

Kadowaki T, Hara K, Yamauchi T, Terauchi Y, Tobe K, Nagai R. Molecular mechanism of insulin resistance and obesity. Exp Biol Med. 2003; 228(10): 1111-7, CrossRef.

Eizadi M, Khorshidi D, Doali H. Relationship between serum adiponectin with anthropometrical and lipid profile biochemical indexes in obese adult men. Int Conf Environ Biomed Biotechnol. 2011; 16: 70-3.

Fida Bacha M, Rola Saad M, Neslihan Gungor M, Silva A, Arslanian M. Adiponectin in youth: relationship to visceral adiposity, insulin sensitivity, and b-cell function. Diabetes Care. 2004; 27(2): 547-52, CrossRef.

Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocr Rev. 2009; 26(3): 439-51, CrossRef.

Okamoto Y, Kihara S, Funahashi T, Matsuzawa Y, Libby P. Adiponectin: a key adipocytokine in metabolic syndrome. Clin Sci. 2006; 110(3): 267-78, CrossRef.

Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest. 2006; 116(7): 1784-92, CrossRef.

Peterlin BL, Bigal ME, Tepper SJ, Urakaze M, Sheftell FD, Rapoport AM. Migraine and adiponectin: is there a connection? Cephalalgia. 2007; 27(5): 435-46, CrossRef.

Manju Chandran M, Susan A, Phillips M, Theodore Ciaraldi P, Robert R, Henry M. Adiponectin: more than just another fat cell hormone? Diabetes Care. 2003; 26(8): 2442-50, CrossRef.

Matsuzawa Y, Funahashi T, Kihara S, Shimomura I. Adiponectin and metabolic syndrome. Arterioscler Thromb Vasc Biol. 2004; 24(1): 29-33, CrossRef.

Kern PA, Di Gregorio GB, Lu T, Rassouli N, Ranganathan G. Adiponectin expression from human adipose tissue: relation to obesity, insulin resistance, and tumor necrosis factor-alpha expression. Diabetes. 2003; 52(7): 1779-85, CrossRef.

Ntambi JM, Kim Y. Adipocyte differentiation and gene expression. J Nutr. 2000; 130(12): 3122-6.

Al-hashem F, Ibrahim I, Bastawy N, Rateb M, Haidara M, Dallak M, et al. Effect of insulin on adiponectin and adiponectin receptor-1 expression in rats with streptozotocin-induced type 2 diabetes. J Health Sci. 2011; 57(4): 334-40, CrossRef.

Ronti T, Lupattelli G, Mannarino E. The endocrine function of adipose tissue: an update. Clin Endocrinol. 2006; 64(4): 355-65, CrossRef.

Yamamoto Y, Hirose H, Saito I, Tomita M. Correlation of the adipocyte-derived protein adiponectin with insulin resistance index and independent of body mass index , in the Japanese population. Clin Sci. 2002; 103(2): 137-42, CrossRef.

Xu A, Chan KW, Hoo RLC, Wang Y, Tan KCB, Zhang J, et al. Testosterone selectively reduces the high molecular weight form of adiponectin by inhibiting its secretion from adipocytes. J Biol Chem. 2005; 280(18): 18073-80, CrossRef.

Gavrila A, Peng C, Chan JL, Mietus JE, Goldberger ARYL, Mantzoros CS, et al. Diurnal and ultradian dynamics of serum adiponectin in healthy men: comparison with leptin, circulating soluble leptin receptor, and cortisol patterns. J Clin Endocrinol Metab. 2003; 88(6): 2838-43, CrossRef.

Nagao K, Inoue N, Wang YM, Yanagita T. Conjugated linoleic acid enhances plasma adiponectin level and alleviates hyperinsulinemia and hypertension in Zucker diabetic fatty (fa/fa) rats. Biochem Biophys Res Commun. 2003; 310(2): 562-6, CrossRef.

Pischon T, Girman CJ, Rifai N, Hotamisligil GS, Rimm EB. Association between dietary factors and plasma adiponectin concentrations in men 1 – 3. Am J Clin Nutr. 2005; 81 (4): 780-6, CrossRef.

Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab. 2001; 86(5): 1930-5, CrossRef.

Ouchi N, Walsh K. A novel role for adiponectin in the regulation of inflammation. Arterioscler Thromb Vasc Biol. 2008; 28(7): 1219-21, CrossRef.

Goldstein BJ, Scalia R. Adiponectin: a novel adipokine linking adipocytes and vascular function. J Clin Endocrinol Metab. 2004; 89(6): 2563-8, CrossRef.

Wellen KE, Hotamisligil GS. Obesity-induced inflammatory changes in adipose tissue. J Clin Invest. 2003; 112(12): 1785-8, CrossRef.

Bays HE, González-Campoy JM, Henry RR, Bergman DA, Kitabchi AE, Schorr AB, et al. Is adiposopathy (sick fat) an endocrine disease? Int J Clin Pract. 2008; 62(10): 1474-83, CrossRef.

Kissebah AH, Krakower GR. Regional adiposity and morbidity. Physiol Rev. 1994; 74(4): 761-811, CrossRef.

Rosen ED, Hsu CH, Wang X, Sakai S, Freeman MW, Gonzalez FJ, et al. C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway. Genes Dev. 2002; 16(1): 22-6, CrossRef.

Kreier F, Kap YS, Mettenleiter TC, van Heijningen C, van der Vliet J, Kalsbeek A, et al. Tracing from fat tissue, liver, and pancreas: a neuroanatomical framework for the role of the brain in type 2 diabetes. Endocrinology. 2006; 147(3): 1140-7, CrossRef.

Oberkofler H, Dallinger G, Liu YM, Hell E, Krempler F, Patsch W. Uncoupling protein gene: quantification of expression levels in adipose tissues of obese and non-obese humans. J Lipid Res. 1997; 38(10): 2125-33, article.

Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007; 117(1): 175-84, CrossRef.

Charo IF, Taubman MB. Chemokines in the pathogenesis of vascular disease. Circ Res. 2004; 95(9): 858-66, CrossRef.

Lacasa D, Taleb S, Keophiphath M, Miranville A, Clement K. Macrophage-secreted factors impair human adipogenesis: involvement of proinflammatory state in preadipocytes. Endocrinology. 2007; 148(2): 868-77, CrossRef.

Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest. 2006; 116(6): 1494-505, CrossRef.

Jensen MD, Caruso M, Heiling V, Miles JM. Insulin regulation of lipolysis in nondiabetic and IDDM subjects. Diabetes. 1989; 38(12): 1595-601, CrossRef.

Suganami T, Tanimoto-Koyama K, Nishida J, Itoh M, Yuan X, Mizuarai S, et al. Role of the Toll-like receptor 4/NF-kappaB pathway in saturated fatty acid-induced inflammatory changes in the interaction between adipocytes and macrophages. Arterioscler Thromb Vasc Biol. 2007; 27(1): 84-91, CrossRef.

Zhou H, Zhao J, Zhang X. Inhibition of uncoupling protein 2 by genipin reduces insulin-stimulated glucose uptake in 3T3-L1 adipocytes. Arch Biochem Biophys. 2009; 486(1): 88-93, CrossRef.

Ouchi N, Kihara S, Arita Y, Maeda K, Kuriyama H, Okamoto Y, et al. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation. 1999; 100(25): 2473-6, CrossRef.

Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun. 1999; 257(1): 79-83, CrossRef.

Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y, et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol. 2000; 20(6): 1595-9, CrossRef.

Hu E, Liang P, Spiegelman BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem. 1996; 271(18): 10697-703, CrossRef.




DOI: https://doi.org/10.21705/mcbs.v3i2.66

Copyright (c)

Indexed by:

                     

                    

                    


Cell and BioPharmaceutical Institute