Apoptotic Effects Sulfated Polysaccharides of Caulerpa racemosa Extract on Colorectal Cancer Cells through Caspase-3
Abstract
Abstract
Background: Colorectal cancer originates from progressive genetic alterations in colorectal epithelial cells. While current therapies (surgery, radiotherapy, and chemotherapy) remain cornerstone treatments, chemotherapy often induces systemic toxicity, adverse effects, and acquired resistance. Sulfated polysaccharides (SPs) from the green alga Caulerpa racemosa demonstrate higher sulfate content than red algal derivatives, correlating with enhanced bioactivity. Despite their potential, SPs from green algae remain understudied compared to brown and red algal counterparts. This study evaluated the anticancer potential of C. racemosa SPs against colorectal cancer through viability inhibition and apoptosis induction.
Materials and Methods: SPs were extracted via Microwave-Assisted Extraction (MAE) and characterized using iodine testing and FTIR spectroscopy. Cytotoxicity was evaluated in WiDr colorectal cancer cells using MTT assay after 24-hour exposure. Apoptotic mechanisms were investigated through in silico molecular docking targeting Caspase-3 activation.
Results: SPs were confirmed by a blue color change and FTIR absorption at 1232 cm-1. At 100 µg/mL, low toxicity was observed based on abundant formazan crystals. Concentrations of 200–400 µg/mL showed predominant viable cells, whereas 500 µg/mL caused significant growth inhibition and cell death. In silico analysis demonstrated that SPs may induce apoptosis by Caspase-3 activation.
Conclusion: SPs of C. racemosa inhibit colorectal cancer cell viability at a concentration of 500 µg/mL and may induce apoptosis via Caspase-3 activation.
Keywords: apoptosis, Caulerpa racemosa, colorectal cancer, sulfated polysaccharides
Full Text:
PDFReferences
Tomita N, Ishida H, Tanakaya K, Yamaguchi T, Kumamoto K, Tanaka T, et al. Japanese Society for Cancer of the Colon and Rectum (JSCCR) Guidelines 2020 for the Clinical Practice of Hereditary Colorectal Cancer. Int J Clin Oncol. 2021; 26(8): 1353‑419, CrossRef.
Ministry of Health. Sehat Negeriku: Kanker Masih Membebani Dunia [Internet]. Jakarta: Ministry of Health Republic of Indonesia; 2024 May 6 [cited 2024 Jul 4]. Available from: sehatnegeriku.kemkes.go.id.
Sanjaya IWB, Lestarini A, Bharata MDY. Karakteristik klinis pasien kanker kolorektal yang menjalani kolonoskopi di RSUD Sanjiwani Gianyar. Aesculapius Med J. 2023; 3(1): 43‑8, CrossRef.
Muhammad S, Antonius PA, Oktavian R, Savannah A. Rapidly growing ovarian granulosa cell tumor following complete debulking for suspected ovarian cancer with histopathology result of benign ovarian cyst. Mol Cell Biomed Sci. 2023; 7(3): 162‑267, CrossRef.
Shinji S, Yamada T, Matsuda A, Sonoda H, Ohta R, Iwai T, et al. Recent advances in the treatment of colorectal cancer. J Nippon Med Sch. 2022; 89(3): 246‑54, CrossRef.
Novilla A, Mustofa, Astuti I, Jumina, Suwito H. Cytotoxic activity of methoxy‑4'‑amino chalcone derivatives against leukemia cell lines. Mol Cell Biomed Sci. 2019; 3(1): 34‑41, CrossRef.
Adakul BA, Ertas B, Cevikelli ZA, Ozbeyli D, Ercan F, Kandemir C, et al. The effects of riboflavin on ischemia/reperfusion induced renal injury: Role on caspase‑3 expression. J Res Pharm. 2019; 23(3): 379‑86, CrossRef.
Mustafa M, Ahmad R, Tantry IQ, Ahmad W, Siddiqui S, Alam M, et al. Apoptosis: a comprehensive overview of signaling pathways, morphological changes, and physiological significance and therapeutic implications. Cells. 2024; 13(22): 1‑29, CrossRef.
Pandey S, Jain S, Sahu SK, Gurjar VK, Vaidya A. Chapter 5 - Caspase‑3: a promising target for anticancer agents. In: Vaidya A, editor. Caspases as Molecular Targets for Cancer Therapy. Amsterdam: Academic Press; 2024. p. 73‑104, CrossRef.
Shrihastini V, Muthuramalingam P, Adarshan S, Sujitha M, Chen JT, Shin H, et al. Plant derived bioactive compounds, their anti‑cancer effects and in silico approaches as an alternative target treatment strategy for breast cancer: an updated overview. Cancers (Basel). 2021; 13(24): 1‑21, CrossRef.
Menaa F, Wijesinghe U, Thiripuranathar G, Althobaiti NA, Albalawi AE, Khan BA, et al. Marine algae‑derived bioactive compounds: a new wave of nanodrugs? Mar Drugs. 2021; 19(9): 1‑36, CrossRef.
Le B, Do DT, Nguyen HM, Do BH, Le HT. Preparation, characterization, and anti‑adhesive activity of sulfate polysaccharide from Caulerpa lentillifera against Helicobacter pylori. Polymers (Basel). 2022; 14(22): 1‑15, CrossRef.
Dar RA, Shahnawaz M, Ahanger MA, Majid I. Exploring the diverse bioactive compounds from medicinal plants: a review. J Phytopharmacol. 2023; 12(3): 189‑95, CrossRef.
Bhalani DV, Nutan B, Kumar A, Singh Chandel AK. Bioavailability enhancement techniques for poorly aqueous soluble drugs and therapeutics. Biomedicines. 2022; 10(9): 1‑22, CrossRef.
Permatasari H, Wewengkang DS, Tertiana NI, Muslim FZ, Yusuf M, Baliulina SO, et al. Anti‑cancer properties of Caulerpa racemosa by altering expression of Bcl‑2, BAX, cleaved caspase 3 and apoptosis in HeLa cancer cell culture. Front Oncol. 2022; 12: 1‑11, CrossRef.
Salanti JF, Momuat LI, Koleangan HSJ. Quality testing and antioxidant activity of soap contains algae extract Eucheuma spinosum. J Ilm Sains. 2022; 22(2): 172‑9, CrossRef.
Gonzaga LJ, Roa MEP, Lavecchia R, zuorro A. Unlocking marine potential: microwave‑assisted extraction of bioactive compounds from marine macroalgae. J Environ Chem Eng. 2025; 13(3): 1‑13, CrossRef.
Sari BH, Triastinurmiatiningsih, Haryani TS. Optimasi metode microwave‑assisted extraction (MAE) untuk menentukan kadar flavonoid total alga coklat Padina australis. J Penelit Kim. 2020; 16(1): 38‑49, CrossRef.
Panjaitan RS, Natalia L. Ekstraksi polisakarida sulfat dari Sargassum polycystum dengan metode microwave assisted extraction dan uji sitoksisitasnya. J Kelautan Perikanan. 2021; 16(1): 23‑32, CrossRef.
Manggau M, Kasim S, Fitri N, Aulia NS, Agustiani AN, Raihan M, et al. Antioxidant, anti‑inflammatory and anticoagulant activities of sulfate polysaccharide isolate from brown alga Sargassum policystum. Earth Environ Sci. 2021; 967(2022): 1‑12, CrossRef.
Yusuf MO. Bond characterization in cementitious material binders using Fourier‑transform infrared spectroscopy. Appl Sci. 2023; 13(5): 1‑27, CrossRef.
Saputra YD. Aktivitas antikanker ekstrak etanol Sargassum duplicatum, Padina australis, dan taurin sebagai supresor gen p21 terhadap sel kanker serviks (HeLa) [Tesis]. Lampung: Univ Lampung; 2023, article.
Sjafaraenan, Johannes E, Wulandari SN. Pengaruh interval dosis 2,44-19,53 µg/mL ekstrak N‑heksana dari Hydroid Aglaophenia cupressina Lamoureux terhadap aktivitas pertumbuhan sel HeLa. J Biol Makassar. 2019; 4(1): 11‑9, article.
Noviardi H, Yuningtyas S, Agustin L. Induksi apoptosis sel MCF‑7 kanker payudara dari kombinasi ekstrak kulit jengkol (Archidendron jiringa) dan daun petai Cina (Leucaena leucocephala). J Farmasi Sains Prakt. 2020; 6(2): 157‑65, CrossRef.
Adiyoga R, Budiman C, Abidin Z, Fujiyama K, Arief II. Evaluating the cytotoxic activity of Lactobacillus plantarum IIA‑1A5 against MCF‑7 human breast cancer cells and identifying its surface layer protein gene. Sains Malaysiana. 2024; 53(4): 881‑92, CrossRef.
Ghasemi M, Turnbull T, Sebastian S, Kempson I. The MTT assay: utility, limitations, pitfalls, and interpretation in bulk and single‑cell analysis. Int J Mol Sci. 2021; 22(23): 1‑30, CrossRef.
Mentari D, Pebrina R, Nurpratami D. Utilization of expired platelet concentrate for production of human platelet lysate as a medium for T47D cell propagation. Mol Cell Biomed Sci. 2022; 6(2): 96‑103, CrossRef.
Husain DR, Wardhani R. Antibacterial activity of endosymbiotic bacterial compound from Pheretima sp. earthworms inhibit the growth of Salmonella typhi and Staphylococcus aureus: in vitro and in silico approach. Iran J Microbiol. 2021; 13(4): 537-43, CrossRef.
Soto‑Vásquez MR, Alvarado‑García PAA, Youssef FS, Ashour ML, Bogari HA, Elhady SS. FTIR characterization of sulfated polysaccharides obtained from Macrocystis integrifolia algae and verification of their antiangiogenic and immunomodulatory potency in vitro and in vivo. Mar Drugs. 2023; 21(1): 1‑21, CrossRef.
Magdugo RP, Terme N, Lang M, Pliego‑Cortes H, Marty C, Hurtado AQ, et al. An analysis of the nutritional and health values of Caulerpa racemosa (Forsskål) and Ulva fasciata (Delile)‑Two Chlorophyta collected from the Philippines. Molecules. 2020; 25(12): 1‑25, CrossRef.
Gusungi DE, Maarisit W, Hariyadi H, Potalangi NO. Studi aktivitas antioksidan dan antikanker payudara (MCF‑7) ekstrak etanol daun benalu langsat Dendrophthoe pentandra. J Biofarmasetika Trop. 2020; 3(1): 166‑74, CrossRef.
Safitri RA, Saptarini O, Sunarni T. Uji aktivitas sitotoksik, ekspresi p53, dan Bcl‑2 dari ekstrak fraksi herba Kelakai (Stenochleana palustris (Burm. F.) Bedd.) terhadap sel kanker payudara T47D. J Biotek Medisiana Indones. 2020; 9(2): 113‑27, CrossRef.
Zakharova EV, Demyanchuk IS, Sobolev DS, Golivanov YY, Baranova EN, Khaliluev MR. Ac‑DEVD‑CHO (caspase‑3/DEVDase inhibitor) suppresses self‑incompatibility-induced programmed cell death in the pollen tubes of petunia (Petunia hybrida E. Vilm.). Cell Death Discov. 2024; 10(59): 1‑11, CrossRef.
Winanta A, Sari WY. Aktivitas antikanker ekstrak etanol, fraksi N‑heksan, dan etil asetat daun tin (Ficus carica L.) pada sel kanker payudara MCF‑7. J Ilm Farmasi. 2023; 19(1): 44‑51, article.
Dewa WJ, Handharyani E, Purwaningsih S, Mariya S. Aktivitas sitotoksik ekstrak keong laut matah merah (Cerithidea obtusa) terhadap sel kanker kolon WiDr. J Sains Veterin. 2024; 42(1): 129‑35, CrossRef.
Sandra F, Sidharta MA. Caffeic acid induced apoptosis in MG63 osteosarcoma cells through activation of caspases. Mol Cell Biomed Sci. 2017; 1(1): 28‑33, CrossRef.
Tamzi NN, Rahman MM, Das S. Recent advances in marine‑derived bioactives towards cancer therapy. Int J Transl Med. 2024; 4(4): 740‑81, CrossRef.
Gengatharan A, Mohamad NV, Zahari CNMC, Vijayakumar R. Seaweeds as emerging functional foods and therapeutics for colorectal cancer management. Discover Food. 2025; 5(128): 1‑29, CrossRef.
DOI: https://doi.org/10.21705/mcbs.v9i3.694
Copyright (c) 2025 Cell and BioPharmaceutical Institute

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Indexed by:
Cell and BioPharmaceutical Institute