Autoantibodies in Diabetes Mellitus

Eka Herawati, Ardian Susanto, Christina Noventy Sihombing

Abstract


Based on American Diabetes Association (ADA), diabetes can be classified into the following general categories: type 1 diabetes (T1D), type 2 diabetes (T2D), gestational diabetes mellitus (GDM) and specific types of diabetes due to other cause. Obesity is by far the main underlying factor causing T2D and its pathological potential lies in obesity-associated insulin resistance, activation of innate immunity and chronic low-grade inflammation. When tissue inflammation induced, tissue destruction occurs, 'self' antigens, which are generally not accessible to T cells, can be released from the affected tissues and promote autoimmune activation. The 4 major autoantibodies are islet-cell cytoplasmic autoantibodies (ICA), glutamid acid decarboxylase antibody (GADA), islet antigen-2 antibody (IA-2A) and insulin autoantibodies (IAA). In addition, ZnT8A has recently been found to predict T1D. ZnT8 is contained in the islets of Langerhans, with the highest expression is in β cells of the pancreas. ZnT8A measurements simultaneously with GADA, IA-2A and IAA achieve rates of 98% detection for onset level of autoimmune diabetes. Presence of antibodies in T2D also shows the potential serious complications compared with T2D without antibodies. The combination of GADA, IA-2A and ZnT8A can be suggested as the most powerful and cost-effective diagnostic approach in patients with T1D.

Keywords: autoantibody, autoimmune, diabetes mellitus, ICA, GADA, IA-2A, IAA, ZnT8A


Full Text:

PDF

References


Sambara Y, Arif M, Bahrun U. Pathomechanism of Renal Damage in Type 2 Diabetes Mellitus Patients. The Indones Biomed J. 2013; 5(3): 161-8. CrossRef

Robertson R. Chronic Oxidative Stress as a Central Mechanism for Glucose Toxicity in Pancreatic Islet Beta Cells in Diabetes. J Biol Chem. 2004; 279(41): 42351-4. CrossRef

[No author]. Introduction. Diabetes Care. 2015; 39 (Suppl 1): S1-S2. doi: 10.2337/dc16-S001. CrossRef

[No author]. Classification and Diagnosis of Diabetes. Diabetes Care. 2015; 39 (Suppl 1): S13-S22. doi: 10.2337/dc16-S005. CrossRef

Visperas A, Vignali D. Are Regulatory T Cells Defective in Type 1 Diabetes and Can We Fix Them? J Immunol. 2016; 197(10): 3762-70. CrossRef

Wong FS, Wen L. B Cells in Autoimmune Diabetes. Rev Diabet Stud. 2005; 2(3): 121-35. CrossRef

Herold KC, Vignali DAA, Cooke A, Bluestone JA. Type 1 Diabetes: Translating Mechanistic Observations into Effective Clinical Outcomes. Nat Rev Immunol. 2013; 13(4): 243-56. CrossRef

Heinonen M, Moulder R, Lahesmaa R. New Insights and Biomarkers for Type 1 Diabetes: Review for Scandinavian Journal of Immunology. Scandinavian J Immunol. 2015; 82(3): 244-53. CrossRef

Itariu BK, Stulnig TM. Autoimmune Aspects of Type 2 Diabetes Mellitus - A Mini-Review. Gerontology. 2014; 60(3): 189-96. CrossRef

Hampe CS. Protective Role of Anti-Idiotypic Antibodies in Autoimmunity – Lessons for Type 1 Diabetes. Autoimmunity. 2012; 45(4): 320-31. CrossRef

Baekkeskov S, Aanstoot HJ, Christgau S, Reetz A, Solimena M, Cascalho M, et al. Identification of the 64K Autoantigen in Insulin-Dependent Diabetes as the GABA-Synthesizing Enzyme Glutamic Acid Decarboxylase. Nature. 1990; 347(6289): 151-6. CrossRef

Winter WE, Schatz DA. Autoimmune Markers in Diabetes. Clin Chem. 2011; 57(2): 168-75. CrossRef

Donath MY, Shoelson SE. Type 2 Diabetes as an Inflammatory Disease. Nat Rev Immunol. 2011; 11(2): 98-107. CrossRef

Todingrante A, Arief M, Bahrun U, Sandra F. Study of low-grade chronic inflammatory markers in men with central obesity: cathepsin S was correlated with waist circumference. Indones Biomed J. 2013; 5(2): 115-20. CrossRef

Ritawaty, Sukmawati IR, Patellongi I, Sandra F. Pathomechanism of insulin resistance in men with central obesity: correlation of GGT, GPx, hs-CRP and plasma total cysteine. Indones Biomed J. 2013; 5(2): 101-6. CrossRef

Reetz A, Solimena M, Matteoli M, Folli F, Takei K, De Camilli P. GABA and Pancreatic Beta-Cells: Colocalization of Glutamic Acid Decarboxylase (GAD) and GABA with Synaptic-Like Microvesicles Suggests Their Role in GABA Storage and Secretion. EMBO J. 1991; 10(5): 1275-84. Link

Urban GJG, Friedman M, Ren P, Törn C, Fex M, Hampe CS, et al. Elevated Serum GAD65 and GAD65-GADA Immune Complexes in Stiff Person Syndrome. Sci Rep. 2015; 5: 11196. doi: 10.1038/srep11196. CrossRef

Wenzlau JM, Moua O, Sarkar SA, Yu L, Rewers M, Eisenbarth GS, et al. SlC30A8 is a Major Target of Humoral Autoimmunity in Type 1 Diabetes and a Predictive Marker in Prediabetes. Ann N Y Acad Sci. 2008; 1150: 256 -9. CrossRef

Brooks-Worrell BM, Reichow JL, Goel A, Ismail H, Palmer JP. Identification of Autoantibody-Negative Autoimmune Type 2 Diabetic Patients. Diabetes Care. 2011; 34(1): 168-73. CrossRef

Taplin CE, Barker JM. Autoantibodies in Type 1 Diabetes. Autoimmunity. 2008; 41(1): 11-8. CrossRef

Huang G, Yin M, Xiang Y, Li X, Shen W, Luo S, et al. Persistence of Glutamic Acid Decarboxylase Antibody (GADA) is Associated with Clinical Characteristics of Latent Autoimmune Diabetes in Adults: A Prospective Study with 3-Year Follow-Up. Diabetes Metab Res Rev. 2016; 32(6): 615-22. CrossRef

Tsirogianni A, Pipi E, Soufleros K. Specificity of Islet Cell Autoantibodies and Coexistence with Other Organ Specific Autoantibodies in Type 1 Diabetes Mellitus. Autoimmun Rev. 2009; 8(8): 687-91. CrossRef

Fiorina P. GABAergic System in β-Cells: From Autoimmunity Target to Regeneration Tool. Diabetes. 2013; 62(11): 3674-6. CrossRef

Crotti C, Selmi C. Chapter 46 - Glutamic acid decarboxylase antibody. In: Shoenfeld Y, Meroni PL, Gershwin ME, editors. Autoantibodies. 3rd Ed. Oxford: Elsevier; 2014. p.385-9. CrossRef

Ten Kate Q, Aanstoot HJ, Birnie E, Veeze H, Mul D. GADA Persistence and Diabetes Classification. Lancet Diabetes Endocrinol. 2016; 4(7): 563-4. CrossRef

Bonifacio E, Lampasona V, Genovese S, Ferrari M, Bosi E. Identification of Protein Tyrosine Phosphatase-like IA2 (Islet Cell Antigen 512) as the Insulin-Dependent Diabetes-Related 37/40K Autoantigen and a Target of Islet-Cell Antibodies. J Immunol. 1995; 155(11): 5419-26. Link

Yang JHM, Downes K, Howson JMM, Nutland S, Stevens HE, Walker NM, et al. Evidence of Association with Type 1 Diabetes in the SLC11A1 Gene Region. BMC Med Genet. 2011; 12: 59. doi: 10.1186/1471-2350-12-59. CrossRef

Decochez K [Internet]. Amsterdam: Driebit; ©1997. IA-2 antibodies (revision number 14) [updated 2014 Aug 13; cited 2016 Dec 12]. Available from: http://www.diapedia.org/21042821251/rev/14. Link

Christie MR, Tun RYM, Lo SS, Cassidy D, Brown TJ, Hollands J, et al. Antibodies to GAD and Tryptic Fragments of Islet 64K Antigen as Distinct Markers for Development of IDDM: Studies with Identical Twins. Diabetes. 1992; 41(7): 782-7. CrossRef

Gorus FK, Goubert P, Semakula C, Vandewalle CL, Schepper JD, Scheen A, et al. IA-2-Autoantibodies Complement GAD65-Autoantibodies in New-Onset IDDM Patients and Help Predict Impending Diabetes in Their Siblings. Diabetologia. 1997; 40(1): 95-9. CrossRef

Pihoker C, Gilliam LK, Hampe CS, Lernmark A. Autoantibodies in Diabetes. Diabetes. 2005; 54(suppl 2): S52-61. CrossRef

Schlosser M, Koczwara K, Kenk H, Strebelow M, Rjasanowski I, Wassmuth R, et al. In Insulin-Autoantibody-Positive Children from the General Population, Antibody Affinity Identifies Those at High and Low Risk. Diabetologia. 2005; 48(9): 1830-2. CrossRef

Barker JM, McFann KK, Orban T. Effect of Oral Insulin on Insulin Autoantibody Levels in the Diabetes Prevention Trial Type 1 Oral Insulin Study. Diabetologia. 2007; 50(8): 1603-6. CrossRef

Hoppu S, Ronkainen MS, Kimpimäki T, Simell S, Korhonen S, Ilonen J, et al. Insulin Autoantibody Isotypes during the Prediabetic Process in Young Children with Increased Genetic Risk of Type 1 Diabetes. Pediatr Res. 2004; 55(2): 236-42. CrossRef

Howson JM, Krause S, Stevens H, Smyth DJ, Wenzlau JM, Bonifacio E, et al. Genetic Association of Zinc Transporter 8 (Znt8) Autoantibodies in Type 1 Diabetes Cases. Diabetologia. 2012; 55(7): 1978-84. CrossRef

Yu L, Boulware DC, Beam CA, Hutton JC, Wenzlau JM, Greenbaum CJ, et al. Zinc Transporter-8 Autoantibodies Improve Prediction of Type 1 Diabetes in Relatives Positive for the Standard Biochemical Autoantibodies. Diabetes Care. 2012; 35(6): 1213-8. CrossRef

Achenbach P, Lampasona V, Landherr U, Koczwara K, Krause S, Grallert H, et al. Autoantibodies to Zinc Transporter 8 and SLC30A8 Genotype Stratify Type 1 Diabetes Risk. Diabetologia. 2009; 52(9): 1881-88. CrossRef

Juusola M, Parkkola A, Härkönen T, Siljander H, Ilonen J, Åkerblom HK, et al. Positivity for Zinc Transporter 8 Autoantibodies at Diagnosis Is Subsequently Associated With Reduced β-Cell Function and Higher Exogenous Insulin Requirement in Children and Adolescents With Type 1 Diabetes. Diabetes Care. 2016; 39(1): 118-21. CrossRef

Yi B, Huang G, Zhou ZG. Current and Future Clinical Applications of Zinc Transporter-8 in Type 1 Diabetes Mellitus. Chin Med J (Engl). 2015; 128(17): 2387-94. CrossRef

Shivaprasad C, Mittal R, Dharmalingam M, Kumar PK. Zinc Transporter-8 Autoantibodies can Replace IA-2 Autoantibodies as a Serological Marker for Juvenile Onset Type 1 Diabetes in India. Indian J Endocrinol Metab. 2014; 18(3): 345-9. CrossRef

Long AE, Gooneratne AT, Rokni S, Williams AJ, Bingley PJ. The Role of Autoantibodies to Zinc Transporter 8 in Prediction of Type 1 Diabetes in Relatives: Lessons from the European Nicotinamide Diabetes Intervention Trial (ENDIT) Cohort. J Clin Endocrinol Metab. 2012; 97(2): 632-7. CrossRef

Dang M, Rockell J, Wagner R, Wenzlau JM, Yu L, Hutton JC, et al. Human Type 1 Diabetes is Associated with T Cell Autoimmunity to Zinc Transporter 8. J Immunol. 2011; 186(10): 6056-63. CrossRef

Fabris M, Zago S, Liguori M, Trevisan MT, Zanatta M, Comici A, et al. Anti-Zinc Transporter Protein 8 Autoantibodies Significantly Improve the Diagnostic Approach to Type 1 Diabetes: An Italian Multicentre Study on Paediatric Patients. Auto Immun Highlights. 2015; 6(1-2): 17-22. CrossRef

Boitard C. Pancreatic Islet Autoimmunity. Presse Méd. 2012; 41(12 P 2): e636-50. CrossRef

Cambuli VM, Incani M, Cossu E, Congiu T, Scano F, Pilia S, et al. Prevalence of Type 1 Diabetes Autoantibodies (GADA, IA2, and IAA) in Overweight and Obese Children. Diabetes Care. 2010; 33(4): 820-2. CrossRef

Hawa MI, Fava D, Medici F, Deng YJ, Notkins AL, De Mattia G, et al. Antibodies to IA-2 and GAD65 in Type 1 and Type 2 Diabetes: Isotype Restriction and Polyclonality. Diabetes care. 2000; 23(2): 228-33. CrossRef

Haller-Kikkatalo K, Pruul K, Kisand K, Nemvalts V, Reimand K, Uibo R. GADA and anti-ZnT8 Complicate the Outcome of Phenotypic Type 2 Diabetes of Adults. Eur J Clin Invest. 2015; 45(3): 255-62. CrossRef

American Diabetes Association. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care. 2010; 33(Suppl 1): S62-9. CrossRef

Järvelä IY, Juutinen J, Koskela P, Hartikainen AL, Kulmala P, Knip M, et al. Gestational Diabetes Identifies Women at Risk for Permanent Type 1 and Type 2 Diabetes in Fertile Age. Diabetes Care. 2006; 29(3): 607-12. CrossRef

Lapolla A, Dalfra MG, Fedele D. Diabetes related autoimmunity in gestational diabetes mellitus: is it important? Nutr Metab Cardiovasc Dis. 2009; 19(9): 674-82. CrossRef

Wender-Ozegowska E, Michalowska-Wender G, Zawiejska A, Pietryga M, Brazert J, Wender M. Concentration of Chemokines in Peripheral Blood in First Trimester of Diabetic Pregnancy. Acta Obstet Gynecol Scand. 2008; 87(1): 14-9. CrossRef

Dereke J, Nilsson C, Landin-Olsson M, Hillman M. Prevalence of Zinc Transporter 8 Antibodies in Gestational Diabetes Mellitus. Diabet Med. 2012; 29(12): e436-9. CrossRef

Haller-Kikkatalo K, Uibo R. Clinical Recommendations for the Use of Islet Cell Autoantibodies to Distinguish Autoimmune and Non-Autoimmune Gestational Diabetes. Clin Rev Allergy Immunol. 2016; 50(1): 23-33. CrossRef




DOI: https://doi.org/10.21705/mcbs.v1i2.8

Copyright (c) 2017 Molecular and Cellular Biomedical Sciences

Indexed by:

                

                  

       

 

 Cell and BioPharmaceutical Institute